
Mini H-type PCs:
C20H, C28H, C40H, and C60H
Programmable Controllers
Operation Manual

Revised July 1994

�

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to the product.

DANGER! Indicates information that, if not heeded, is likely to result in loss of life or serious
injury.

WARNING Indicates information that, if not heeded, could possibly result in loss of life or
serious injury.

Caution Indicates information that, if not heeded, could result in relative serious or minor
injury, damage to the product, or faulty operation.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids
The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1, 2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

 OMRON, 1990
��� ������ �	�	�
	��
� ���� �� ���� ����������� ��� �	 �	������	�� ����	� �� � �	���	
�� ����	�� �� ���������	�� �� ���

����� �� �� ��� �	���� �	��������� 	�	�������� ������������� �	�������� �� ���	����	� ������� ��	 ����� �����	� �	�����

���� �� ����
�

� ���	�� ��������� �� �����	� ���� �	��	�� �� ��	 ��	 �� ��	 ����������� �������	� �	�	��� ���	�
	�� �	����	 ����
 ��

���������� ����
��� �� �����
	 ��� ������������� ��������� ��	 ����������� �������	� �� ���� ������ �� ����	�� �� �����	

������� �����	�
	�� ��	������� ��� �		� ��!	� �� ��	 ��	�������� �� ���� �������
	
	���	�	��� ����
 �����	� ��

�	������������ ��� 	����� �� ����������
	���	� �� ��� ��������� �����	� ��� �����	� �	������� ���� ��	 ��	 �� ��	 ��������

���� �������	� �� ���� ������������

���

����� �	
�������

��
�
�� �

����������� �� �
��� �������� 	

��	 ��� ���
��� �� �� ��
�� 	

��� �� ���������
� 	

��� ����� ������ ���������
� �

��! �������� �� �� �"��# ��� �

��$ ����"���#� %������ �

��& '�#��#(�� �#��#�� !

��
�
�� �

��������
������������� �� �
	��)����# ��� *

	�	 �� �����
��# ��� *

��
�
�� �

�� ��! ����� "� �
���)� ����� ��� �+

��	 %# # '��# , ��� ��� �+

���)� -)� ���#� ���#�. '��# ��

��� ,� -,"���#� ���#�. '��# ��

��! '� -'�/���#�� ���#�. '��# �0

��$ %� -%# # ������. '��# 	*

��& 1� -1�����
 ���#�. '��# �*

��* �� -�����2���� ��. '��# �*

��0 �� -���3 ���#�. '��# ��

���+ ���
�#� ������ ��

���� �� -���"��#�� ���#�. '��# ��

��
�
�� #

$�����% ��� �������% &��%�� � #'� � � � � � � � � � � � � � � � � � � �
��� 4#��� ��������� �$

��)�� ��� ��� ���������
� �$

��� 4#��� �#���� %�#
�#�� �&

��� ��� ���
�#����
 ������� $�

��! ���"#�# ��� ��� �"��# ��� $$

��$)�"� ��
5 ��������
5 #�� ����3��
 �� ���
�#� &+

��& ��� ������
 4� , # �� **

��* 6��3 4� � -)� ���#� ���#��. *0

��0 ���
�#����
 ����#� ���� 0�

���+ ���
�#� 7/��� ��� 0�

����

��
�
�� '

���������� ��� "'� �
!�� �� # ��� 0&

!�)�� ��� ��� 8���# 0&

!�� %# # '��#�5 %������ 9#����5 #�� 8�#
� 0&

!�� %������� �# ��)�� ��� ���� 00

!�! �#���� %�#
�#�)�� ��� ���� �++

!�$ 4� ��� ���)�� ��� ���� �+�

!�&)��7����: #��)��7����: ��7'� ��)�-+	. #��)��-+�. �+*

!�* ;<�� #�� ;<�� 7�% �� ;��-+�. #�� ;�7-+!. ��+

!�0 7�% �� 7�%-+�. ���

!��+ ����� #�� ���� ��)�� ��� ���� ���

!��� %# # ,��� ��
 �	0

!��	 %# # ������� ��0

!��� %# # ���"#����� ��!

!��� %# # ���������� �!�

!��! 4�% �#����# ���� �$	

!��$ 4��#�� �#����# ���� �&&

!��& ��
��)�� ��� ���� �*	

!��* ,�(��� ���� �*$

!��0 , �")�� ��� ���� �*0

!�	+ ,"���#�)�� ��� ���� �0&

��
�
�� (

&��%�� �)������� �� ��% ���� �
$�� ����� ���� 			

$�	 �#����# ��
 ����� ���� 		!

$��)�� ��� ��� 7/��� ��� ����� 		!

$��)2� ���"���� ���� 	�+

$�! 1�� ���3 ���"���� ���� 	��

��
�
�� �

&��%�� *�+�%%��% ��� �)������� ���� � � � � � � � � � � � � � � � � �
&�� %��"�#���
 #�� ���#���
 7���� ����#
�� 	��

&�	 ���� ����
 �"��# ��� #�� ��������
 %# # 	�!

��
�
�� ,

-�.���

����/��� �''� �
*�� �,�	�	�)� ���#�� ����� 	!$

*�	 %� #�� '� '��# ,� ��
� 	!$

*�� ,� '��# 4� � #�� 8�#
� 	!0

*�� 1�� ���3 ��������# ���� ��� ���� 	!0

*�! 1�� ���3 ����#��� #�� ���"����� 	$�

*�$ ����#�� ������ 	*�

��
�
�� "

����+0��1�����% �,'� �
0�� '�#��)����# ��� 	*$

0�	 ���
�#���� '�#��� #�� 7���� ����#
�� 	*$

0�� ��#���
 #�� ���#���
 7����� #�� ����#
�� 	*$

0�� 7���� ����#
�� 	*&

0�! 7���� 1�� ��� 8��� ��� 	*0

0�$ 1�� ���3 7���� ���������
 	*0

�)

�22������� �"�� �
'
 , #��#�� ������ 	0�

4
 ���
�#����
)�� ��� ���� 	0!

�
 ���
�#����
 ������� �"��# ���� ��0

%
 7���� #�� '�� ��� �� 8�#
 �"��# ��� �	&

7
 ������ '��#� �	0

8
 6��� '���
���� ��������
 ,��� � ���

=
 ���
�#� �����
 ,��� ��0

1
 %# # ���������� �#(�� ���

)
 7/ ����� ',�)) ���

;
 ���
�#����
 ������� :�� ����� ��!

:
 �#�#�� �� '��# �����
 ��#� � ��&

30�����! �'�� �

���) �(�� �

-������� ������! ���� �

)�

About this Manual:

The OMRON C20H, C28H, C40H, and C60H offer a simple but effective way to automate processing.
Manufacturing, assembly, packaging, and many other processes can be automated to save time and
money.

This manual describes the characteristics and abilities of the PCs, as well as programming operations
and instructions and other aspects of operation and preparation. Before attempting to operate the PC,
thoroughly familiarize yourself with the information contained herein. Hardware information is pro-
vided in detail in the Mini H-type PCs: C20H/C28H/C40H/C60H Installation Guide. A table of other
manuals that can be used in conjunction with this manual is provided at the end of Section 1 Introduc-
tion.

Section 1 Introduction explains the background and some of the basic terms used in ladder-diagram
programming. It also provides an overview of the process of programming and operating a PC and
explains basic terminology used with OMRON PCs. Descriptions of Peripheral Devices used with the
Mini H-type PCs and a table of other manuals available to use with this manual for special PC appli-
cations are also provided.

Section 2 Hardware Considerations explains basic aspects of the overall PC configuration and de-
scribes the indicators that are referred to in other sections of this manual.

Section 3 Memory Areas takes a look at the way memory is divided and allocated and explains the
information provided there to aid in programming. It explains how I/O is managed in memory and how
bits in memory correspond to specific I/O points. It also provides information on System DM, a special
area in Mini H-type PCs that provides the user with flexible control of PC operating parameters.

Section 4 Writing and Entering Programs explains the basics of ladder-diagram programming,
looking at the elements that make up the parts of a ladder-diagram program and explaining how exe-
cution of this program is controlled. It also explains how to convert ladder diagrams into mnemonic
code so that the programs can be entered using a Programming Console.

Section 5 Instruction Set describes all of the instructions used in programming.

Section 6 Program Execution Timing explains the cycling process used to execute the program
and tells how to coordinate inputs and outputs so that they occur at the proper times.

Section 7 Program Debugging and Execution explains the Programming Console procedures used
to input and debug the program and to monitor and control operation.

Section 8 RS-232C Interface describes the modes, settings, and procedures essential for making
use of the built-in RS-232C interface. It also list all of the commands that can be downloaded from a
host computer connected to the RS-232C interface.

Finally, Section 9 Troubleshooting provides information on error indications and other means of re-
ducing down-time. Information in this section is also useful when debugging programs.

The Appendices provide tables of standard OMRON products available for the Mini H-type PCs, ref-
erence tables of instructions and Programming Console operations, coding sheet to help in program-
ming and parameter input, and other information helpful in PC operation.

WARNING Failure to read and understand the information provided in this manual may result in
personal injury or death, damage to the product, or product failure. Please read each
section in its entirety and be sure you understand the information provided in the section
and related sections before attempting any of the procedures or operations given.

�

��
�
�� �

�����������

���� ��� ���
���� # (���� �������� �� �� ��� ��� �� ���
�#��#(�� ��� ������� #�� �/"�#��� ���� �������� ���� ��

�#�������#
�#� "��
�#����

) #��� "������� #� �������� �� �� "������ �� "��
�#����
 #�� �"��# ��
 # �� #�� �/�

"�#��� (#��� ��������
� ���� �� � ����� ���
 '��� "������� #�� ������" ���� �� "���"���#� ������� ���� �� � ��

���� 1� �"� ���5 #�� # #(�� �� � ��� �#��#�� #�#��#(�� � ��� �� � ��� �#��#� ��� �"���#� �� #""���# ����

��� �������� 	

��	 ��� ���
��� �� �� ��
�� 	

��� �� ���������
� 	

��� ����� ������ ���������
� �

��! �������� �� �� �"��# ��� �

��$ ����"���#� %������ �

��& '�#��#(�� �#��#�� !

�

1-1 Overview
A PC (Programmable Controller) is basically a CPU (Central Processing Unit)
containing a program and connected to input and output (I/O) devices. The
program controls the PC so that when an input signal from an input device
turns ON, the appropriate response is made. The response normally involves
turning ON an output signal to an output device. The input devices could be
photoelectric sensors, pushbuttons on control panels, limit switches, or any
other device that can produce a signal that can be input into the PC. The out-
put devices could be solenoids, switches activating indicator lamps, relays
turning on motors, or any other devices that can be activated by signals out-
put from the PC.

For example, a sensor detecting a passing product turns ON an input to the
PC. The PC responds by turning ON an output that activates a pusher that
pushes the product onto another conveyor for further processing. Another
sensor, positioned higher than the first, turns ON a different input to indicate
that the product is too tall. The PC responds by turning on another pusher
positioned before the pusher mentioned above to push the too-tall product
into a rejection box.

Although this example involves only two inputs and two outputs, it is typical of
the type of control operation that PCs can achieve. Actually even this exam-
ple is much more complex than it may at first appear because of the timing
that would be required, i.e., “How does the PC know when to activate each
pusher?” Much more complicated operations, however, are also possible.
The problem is how to get the desired control signals from available inputs at
appropriate times.

To achieve proper control, the Mini H-type PCs, like the other C-series PCs,
use a form of PC logic called ladder-diagram programming. This manual is
written to explain ladder-diagram programming and to prepare the reader to
program and operate the Mini H-type PCs.

1-2 The Origins of PC Logic
PCs historically originate in relay-based control systems. Although the inte-
grated circuits and internal logic of the PC have taken the place of the dis-
crete relays, timers, counters, and other such devices, actual PC operation
proceeds as if those discrete devices were still in place. PC control, however,
also provides computer capabilities and accuracy to achieve a great deal
more flexibility and reliability than is possible with relays.

The symbols and other control concepts used to describe PC operation also
come from relay-based control and form the basis of the ladder-diagram pro-
gramming method. Most of the terms used to describe these symbols and
concepts, however, have come in from computer terminology.

1-3 PC Terminology
Although also provided in the Glossary at the back of this manual, the follow-
ing terms are crucial to understanding PC operation and are thus explained
here.

Inputs and Outputs A device connected to the PC that sends a signal to the PC is called an input
device; the signal it sends is called an input signal. A signal enters the PC
through terminals or through pins on a connector on a Unit. The place where
a signal enters the PC is called an input point. This input point is allocated a
location in memory that reflects its status, i.e., either ON or OFF. This mem-
ory location is called an input bit. The CPU, in its normal processing cycle,

�� ������	
	�� Section 1-3

�

monitors the status of all input points and turns ON or OFF corresponding
input bits accordingly.

There are also output bits in memory that are allocated to output points on
Units through which output signals are sent to output devices, i.e., an output
bit is turned ON to send a signal to an output device through an output point.
The CPU periodically turns output points ON or OFF according to the status
of the output bits.

These terms are used when describing different aspects of PC operation.
When programming, one is concerned with what information is held in mem-
ory, and so I/O bits are referred to. When talking about the Units that connect
the PC to the controlled system and the places on these Units where signal
enter and leave the PC, I/O points are referred to. When wiring these I/O
points, the physical counterparts of the I/O points, either terminals or connec-
tor pins, are referred to. When talking about the signals that enter or leave
the PC, one refers to input signals and output signals, or sometimes just in-
puts and outputs. It all depends on what aspect of PC operation is being
talked about.

The Control System includes the PC and all I/O devices it uses to control an
external system. A sensor that provides information to achieve control is an
input device that is clearly part of the Control System. The controlled system
is the external system that is being controlled by the PC program through
these I/O devices. I/O devices can sometimes be considered part of the con-
trolled system, e.g., a motor used to drive a conveyor belt.

1-4 OMRON Product Terminology
OMRON products are divided into several functional groups that have gener-
ic names. Appendix A Standard Models list products according to these
groups. The term Unit is used to refer to all of the OMRON PC products.

Product groups include Programming Devices, Peripheral Devices, and DIN
Rail Products.

1-5 Overview of PC Operation
The following are the basic steps involved in programming and operating a
C20H-type PC. Assuming you have already purchased one or more of these
PCs, you would be familiar with steps one and two, which are discussed
briefly below. This manual is written to explain steps three through six, eight,
and nine. The relevant sections of this manual that provide more information
are listed with each of these steps.

1, 2, 3... 1. Determine what the controlled system must do, in what order, and at
what times.

2. Determine what Units will be required and whether your system configu-
ration will require an Expansion I/O Units. Refer to the Mini H-type PC
Installation Guide.

3. On paper, assign all input and output devices to I/O points on Units and
determine which I/O bits will be allocated to each.

4. Using relay ladder symbols, write a program that represents the se-
quence of required operations and their inter-relationships. Be sure to
also program appropriate responses for all possible emergency situ-
ations. (Refer to Section 4 Writing and Entering Programs, Section 5 In-
struction Set, and Section 6 Program Execution Timing)

5. Input the program and all required operating parameters into the PC.
(Refer to Section 7 Program Debugging and Execution)

Controlled System and
Control System

������� 	� ��
������	� Section 1-5

#

6. Debug the program, first to eliminate any syntax errors, and then to find
execution errors. (Refer to Section 7 Program Debugging and Execution
and Section 9 Troubleshooting)

7. Wire the PC to the controlled system. This step can actually be started
as soon as step 3 has been completed. Refer to the C20H, C28H, C40H
Installation Guide and to Operation Manuals and System Manuals for
details on individual Units.

8. Test the program in an actual control situation and carry out fine tuning
as required. (Refer to Section 7 Program Debugging and Execution and
Section 9 Troubleshooting)

Control System Design Designing the Control System is the first step in automating any process. A
PC can be programmed and operated only after the overall Control System is
fully understood. Designing the Control System requires, first of all, a thor-
ough understanding of the system that is to be controlled. The first step in
designing a Control System is thus determining the requirements of the con-
trolled system.

Input/Output Requirements The first thing that must be assessed is the number of input and output points
that the controlled system will require. This is done by identifying each device
that is to send an input signal to the PC or which is to receive an output sig-
nal from the PC. Keep in mind that the number of I/O points available de-
pends on the configuration of the PC. Refer to 3-3 IR Area for details on I/O
capacity and the allocation of I/O bits to I/O points.

Next, determine the sequence in which control operations are to occur and
the relative timing of the operations. Identify the physical relationships be-
tween the I/O devices as well as the kinds of responses that should occur
between them.

For instance, a photoelectric switch might be functionally tied to a motor by
way of a counter within the PC. When the PC receives an input from a start
switch, it could start the motor. The PC could then stop the motor when the
counter has received a specified number of input signals from the photoelec-
tric switch.

Each of the related tasks must be similarly determined, from the beginning of
the control operation to the end.

1-6 Peripheral Devices
The following peripheral devices can be used in programming, either to input/
debug/monitor the PC program or to interface the PC to external devices to
output the program or memory area data. Model numbers for all devices
listed below are provided in Appendix A Standard Models. OMRON product
names have been placed in bold when introduced in the following descrip-
tions.

Programming Console A Programming Console is the simplest form of programming device for OM-
RON PCs. It is connected directly to the CPU without requiring a separate
interface. Programming Console operations are described later in this manu-
al. The Programming Console cannot be used when a Peripheral Interface
Unit or CPU-mounting Host Link Unit is connected.

The GPC allows you to perform all the operations of the Programming Con-
sole as well as many additional ones. PC programs can be written on-screen
in ladder-diagram form as well as in mnemonic form. As the program is writ-
ten, it is displayed on a liquid crystal display, making confirmation and modifi-
cation quick and easy. Syntax checks may also be performed on the pro-
grams before they are downloaded to the PC. Many other functions are avail-
able, depending on the Memory Pack used with the GPC.

Sequence, Timing, and
Relationships

Graphic Programming
Console: GPC

���������
 ������� Section 1-6

'

The GPC also functions as an interface to copy programs directly to a stan-
dard cassette tape recorder. A PROM Writer, Floppy Disk Interface Unit, or
Printer Interface Unit can be directly mounted to the GPC to output programs
directly to an EPROM chip, floppy disk drive, or printing device, respectively.

The GPC is connected to a Mini H-type PC via a Peripheral Interface Unit.

LSS is designed to run on IBM AT/XT compatibles to enable all of the opera-
tions available on the GPC.

The LSS is connected to a Mini H-type PC via a Peripheral Interface Unit or
the RS-232C interface.

The FIT is an OMRON computer with specially designed software that allows
you to perform all of the operations that are available with the GPC or LSS.
Programs can also be output directly to an EPROM chip, floppy disk drive, or
printing device without any additional interface. The FIT has an EPROM
writer and two 3.5” floppy disk drives built in.

The FIT is connected to a Mini H-type PC via a Peripheral Interface Unit or
the RS-232C interface.

PROM Writer Use only the GPC with the PROM Writer to write programs to EPROM chips.

Printer Interface Unit Use only the GPC with the Printer Interface Unit connected to a printer or
X--Y plotter to print out programs in either mnemonic or ladder-diagram form.

Data Access Console The Data Access Console can be used to monitor or change data in the TC,
IR and SR areas. It has two levels of operations, one of which protects cer-
tain areas from being changed. It also provides certain special functions,
such as keyboard mapping to data areas. (The PC must be set to either Jap-
anese or English to use the Data Access Console.)

1-7 Available Manuals

The following table lists other manuals that may be required to program and/
or operate the Mini H-type PCs. Operation Manuals and/or Operation Guides
are also provided with individual Units and are required for wiring and other
specifications.

Name Cat. No. Contents

C20H, C28H, C40H, C60H PC Installation Guide W175 Hardware specifications

Data Access Console Operation Guide W173 Operating and installation procedures for the Data
Access Console

GPC Operation Manual W84 Programming procedures for the GPC (Graphics
Programming Console)

FIT Operation Manual W150 Programming procedures for using the FIT (Factory
Intelligent Terminal

LSS Operation Manual W237 Programming procedures for using LSS (Ladder Support
Software)

Printer Interface Unit Operation Guide W107 Procedures for interfacing a PC to a printer

PROM Writer Operation Guide W155 Procedures for writing programs to EPROM chips

Floppy Disk Interface Unit Operation Guide W119 Procedures for interfacing a PC to a floppy disk drive

Host Link Unit System Manual W143 Procedures for creating Host Link Systems combining
PCs and host computers.

Ladder Support Software:
LSS

Factory Intelligent Terminal:
FIT

����
��
� �����
� Section 1-7

�

��
�
�� �

��������
�������������

���� ��� ��� "������� ������# ��� �� �#���#�� #�"�� � �� �� ���� 1� �"� ��� �# #�� �����#� � "��
�#����
 #��

��� �#�� �"��# ���
 ����� ������� �����# ��� �� �� ��< #�� (#��� �� �����
��# ���
 ���� ������# ��� �� ������� �� ���

 #�� �� �� ���� 1� �"� ���> �	+12�	*12��+12�$+1 ������������ 	
���

	��)����# ��� *

	�	 �� �����
��# ��� *

,

2-1 Indicators

CPU indicators provide visual information on the general operation of the PC.
Although not substitutes for proper error programming using the flags and
other error indicators provided in the data areas of memory, these indicators
provide ready confirmation of proper operation.

CPU indicators are described in the following table. Indicators are the same
for all Mini H-type PCs.

Indicator Function

POWER Lights when power is supplied to the CPU.

RUN Lights when the CPU is operating normally.

ALM/ERR ALARM: Flashes when a non-fatal error is discovered in error
diagnosis operations. PC operation will continue.

ERROR:Lights when a fatal error is discovered in error diagnosis
operations. When this indicator lights, the RUN indicator will go
off, CPU operation will be stopped, and all outputs from the PC
will be turned OFF.

OUTPUT Lights when the Unit should turn on an output.

INPUT Lights when the Unit has an input signal.

2-2 PC Configuration

With a Mini H-type PC System, you can set up a configuration utilizing any-
where from 20 to 240 I/O points. Depending on the number of I/O points you
need, you can choose any of the four PCs (C20H, C28H, C40H, or C60H)
and combine it with up to three Expansion I/O Units for a total of four Units in
a PC System.

For example, if you only need a very simple system, a C20H PC alone will
provide 12 input and 8 output points. For more sophisticated operations, a
C60H PC can be connected with three C60H Expansion I/O Units to provide
128 input and 112 output points. You can select any other combination of
Units within this range, which will provide exactly the capacity you require for
your Control System.

For detailed explanations of possible system configurations, refer to the ap-
propriate sections of the Mini H-type PCs: C20H, C28H, C40H, C60H Instal-
lation Guide.

The Mini H-type PCs have a built-in RS-232C interface, which allows them to
connect directly to an FA Computer, Display Terminal, commercially available
printers, and other devices which employ an RS-232C interface. Mini H-type
PCs equipped with an E-V1-version CPU can transfer data with similarly
equipped Mini H-type PC’s through the RS-232C interface.

In addition, the built-in Peripheral Interface Unit connector allows connection
to an FA Computer via a CPU-mounting Host Link Unit, and the built-in Pe-
ripheral Device (Console) interface allows connection to a Programming
Console or a Data Access Console.

CPU Indicators

RS-232C and Peripheral
Device Interfaces

�� �	���������	� Section 2-2

"

��
�
�� �

�� ��! �����

9#����� �"�� �� �# # #�� ��?����� � #������ ����� ��� #�� ������ ��� ���
 �� �#���� # � �#�#
��
 ��� �# #5 �� �� �� "���

����� �� � �#����� ������ �����5 �#�� �� � # �������� ���� ���
 ��� #��#�
����#��� #������(�� (� �� ���� �� "��
�#��

���
 #�� ��#������� #� ��	� �����
 ��� � ��� ������ #��# �� �� ���
�#� ������5 ����� �� ����@� "��
�#� �� #� �#���

� ����
 ���� ��� ��� ������(�� ���� #��#� ��������#��� #�� "������� ������# ��� �# ���� (� ������#�� � ��� ���

"�# $����������� #%� �

"�& '��� ��	� (�������	 #%� �

"�" $�)$��	���� �	���* ��	� #"� �

"�+ (�)(�	���� �	���* ��	� #+� �

"�+�# �(�&"&,-,./��������� 0��� 1��! /��� 2���� ��� ,������ 3��� #4� � � � � � � � � � � � � � � � � � �

"�+�& $��	����� ������ ����	 3�� #4� �

"�+�" 2���	� (����� 0��� 3�� #5� �

"�+�+ $-� (����� 0��� 3�� #5� �

"�+�4 2�1)2�����	 �����* ��	� #6� �

"�+�5 3���	�� ����� 2��� #6� �

"�+�6 ,���	 7��	 ���� 2��� #6� �

"�+�8 2���� ,���	 2��� #6� �

"�+�9 ,���! .���	 3��� #6� �

"�+�#% (�	� 2��� #8� �

"�+�## $���������� :	������ ���� 2���� � #8� �

"�+�#& ������	��� 2���� #8� �

"�4 ��)��:������ �	���* ��	� #9� �

"�4�# �	
	�����	 '��� ,����	� 3��� &%� �

"�4�& 0������		� ,����	� 3��� &%� �

"�4�" �(�&"&, ,������������� ���� ,��	 &%� �

"�4�+ �(�&"&, ,������������� 2���� &#� �

"�4�4 �(�&"&, ,������������� ,����	�� &#� �

"�4�5 �(�&"&, 3��	� �	�	�
	� ��	� &#� �

"�4�6 7 ��$
�1 ���	 $���� ,���	� 3�� &#� �

"�4�8 ���� 0������ 3��� &&� �

"�4�9 �(�&"&, 3��	� $���� ��	� &&� �

"�4�#% (���	� .����	�	� 2���� &&� �

"�4�## (���	� ,������ 3��� &"� �

"�4�#& (������ ��	������ ���	 &5� �

"�4�#" ,���	�� 7��	 ��	� &5� �

"�4�#+ ,��	����-,���! ��	� ��� 3��� &5� �

"�4�#4 7 ��$
�1 ���	 ;	� 3��� &6� �

"�4�#5 .��	����� ,����	� &6� �

"�4�#6 (,�
)#8* ,���	 7��	 2��� &6� �

"�4�#8 .���������� ,�����	-.	����	��� $��	����	 /��� �����	� 2��� &8� � � � � � � � � � � � � � � � � � � �

"�4�#9 2�1(��	�	������ ����	�� &8� �

"�4�&% ,���	 7��	 $��������� &8� �

"�5 '�)'��� �	����* ��	� &8� �

"�5�# <	�	��� /�	� ��	�� &9� �

"�5�& .����	�	� ��� .����	�	� 3��!�� ��	�� &9� �

"�5�" ���� 0������ ��	� "4� �

"�5�+ /�	� .������ 0	��	� ��	� "6� �

"�6 0�)0������ �	���* ��	� "8� �

"�8 7,)7��	�-,����	�* ��	� "8� �

"�8�# 0������		� ,����	� "9� �

"�8�& (���	� '� 0������		� ,����	� .����	�	�� +#� �

"�8�" $��	����� '��� ������� +&� �

"�9 1�)1��! �	���* ��	� ++� �

"�#% .������ �	���� ++� �

"�## 7�)7	������� �	���* ��	� ++� �

�4

3-1 Introduction
Details, including the name, acronym, range, and function of each area are
summarized in the following table. All but the last three of these areas are
data areas. Data and memory areas are normally referred to by their acro-
nyms.

Area Acronym Range Function

Internal Relay IR Words: 000 to 246
Bits: 0000 to 24615

Used to control I/O points, other bits, timers,
and counters, and to temporarily store data.

Special Relay SR Words: 247 to 255
Bits: 24700 to 25507

Contains system clocks, flags, control bits, and
status information.

Auxiliary Relay AR Words: AR 00 to AR 27
Bits: AR 00 to AR 2715

Contains flags and bits for special functions.
Retains status during power failure.

Data Memory DM Read/write: DM 0000 to DM 0999
Read only: DM 1000 to DM 1999

Used for internal data storage and
manipulation.

Holding Relay HR Words: HR 00 to HR 99
Bits: HR 0000 to HR 9915

Used to store data and to retain the data values
when the power to the PC is turned off.

Link Relay LR Words: LR 00 to LR 63
Bits: LR 0000 to 6315

Available for use as work bits.

Timer/Counter TC TC 000 to TC 511 (TC numbers used
to access other information)

Used to define timers and counters, and to
access completion flags, PV, and SV. In
general, when used as a bit operand, a TC
number accesses the completion flag for the
timer or counter defined using the TC number.
When used as a word operand, the TC number
accesses the present value of the timer or
counter.

Temporary Relay TR TR 00 to TR 07 (bits only) Used to temporarily store and retrieve
execution conditions. These bits can only be
used in the Load and Output instructions.
Storing and retrieving execution conditions is
necessary when programming certain types of
branching ladder diagrams.

Program Memory UM UM: Depends on Memory Unit used. Contains the program executed by the CPU.

Work Bits and Words When some bits and words in certain data areas are not being used for their
intended purpose, they can be used in programming as required to control
other bits. Words and bits available for use in this fashion are called work
words and work bits. Most, but not all, unused bits can be used as work bits.
Those that can be used are described area-by-area in the remainder of this
section. Actual application of work bits and work words is described in Sec-
tion 4 Writing and Entering Programs.

Flags and Control Bits Some data areas contain flags and/or control bits. Flags are bits that are
automatically turned ON and OFF to indicate particular operation status. Al-
though some flags can be turned ON and OFF by the user, most flags are
read only; they cannot be controlled directly.

Control bits are bits turned ON and OFF by the user to control specific as-
pects of operation. Any bit given a name using the word bit rather than the
word flag is a control bit, e.g., Restart bits are control bits.

3-2 Data Area Structure
When designating a data area, the acronym for the area is always required
for all but the IR and SR areas. Although the acronyms for the IR and SR
areas are often given for clarity in text explanations, they are not required,
and not entered, when programming. Any data area designation without an
acronym is assumed to be in either the IR or SR area. Because IR and SR

���� ���� ��������� Section 3-2

��

addresses run consecutively, the word or bit addresses are sufficient to differ-
entiate these two areas.

An actual data location within any data area but the TC area is designated by
its address. The address designates the bit or word within the area where the
desired data is located. The TC area consists of TC numbers, each of which
is used for a specific timer or counter defined in the program. Refer to 3-8 TC
(Timer/Counter) Area for more details on TC numbers and to 5-10 Timer and
Counter Instructions for information on their application.

The rest of the data areas (i.e., the IR, SR, HR, DM, AR, and LR areas) con-
sist of words, each of which consists of 16 bits numbered 00 through 15 from
right to left. IR words 000 and 001 are shown below with bit numbers. Here,
the content of each word is shown as all zeros. Bit 00 is called the rightmost
bit; bit 15, the leftmost bit.

The term least significant bit is often used for rightmost bit; the term most
significant bit, for leftmost bit. These terms are not used in this manual be-
cause a single data word is often split into two or more parts, with each part
used for different parameters or operands. When this is done, the rightmost
bits of a word may actually become the most significant bits, i.e., the leftmost
bits in another word,when combined with other bits to form a new word.

Bit number

IR word 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IR word 001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

The DM area is accessible by word only; you cannot designate an individual
bit within a DM word. Data in the IR, SR, HR, AR, and LR areas is accessible
either by word or by bit, depending on the instruction in which the data is be-
ing used.

To designate one of these areas by word, all that is necessary is the acronym
(if required) and the two-, three-, or four-digit word address. To designate an
area by bit, the word address is combined with the bit number as a single
four- or five-digit address. The following table show examples of this. The two
rightmost digits of a bit designation must indicate a bit between 00 and 15,
i.e., the rightmost digit must be 5 or less, and the next digit to the left must be
either 0 or 1.

The same TC number can be used to designate either the present value (PV)
of the timer or counter, or a bit that functions as the Completion Flag for the
timer or counter. This is explained in more detail in 3-8 TC (Timer/Counter)
Area.

Area Word designation Bit designation

IR 000 00015 (leftmost bit in word 000)

SR 252 25200 (rightmost bit in word 252)

DM DM 1250 Not possible

TC TC 215 (designates PV) TC 215 (designates completion flag)

LR LR 45 LR 1200

���� ���� ��������� Section 3-2

��

Data Structure Word data input as decimal values is stored in binary-coded decimal (BCD);
word data entered as hexadecimal is stored in binary form. Each four bits of
a word represents one digit, either a hexadecimal or decimal digit, numeri-
cally equivalent to the value of the binary bits. One word of data thus con-
tains four digits, which are numbered from right to left. These digit numbers
and the corresponding bit numbers for one word are shown below.

Bit number

Contents 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Digit number 3 2 1 0

When referring to the entire word, the digit numbered 0 is called the right-
most digit; the one numbered 3, the leftmost digit.

When entering data into data areas, it must be input in the proper form for
the intended purpose. This is no problem when designating individual bits,
which are merely turned ON (equivalent to a binary value of 1) or OFF (a bi-
nary value of 0). When entering word data, however, it is important to input it
either as decimal or as hexadecimal, depending on what is called for by the
instruction it is to be used for. Section 5 Instruction Set specifies when a par-
ticular form of data is required for an instruction.

Binary and hexadecimal can be easily converted back and forth because
each four bits of a binary number is numerically equivalent to one digit of a
hexadecimal number. The binary number 0101111101011111 is converted to
hexadecimal by considering each set of four bits in order from the right. Bi-
nary 1111 is hexadecimal F; binary 0101 is hexadecimal 5. The hexadecimal
equivalent would thus be 5F5F, or 24,415 in decimal (163 x 5 + 162 x 15 + 16
x 5 + 15).

Decimal and BCD are easily converted back and forth. In this case, each
BCD digit (i.e., each group of four BCD bits) is numerically equivalent of the
corresponding decimal digit. The BCD bits 0101011101010111 are converted
to decimal by considering each four bits from the right. Binary 0101 is deci-
mal 5; binary 0111 is decimal 7. The decimal equivalent would thus be 5,757.
Note that this is not the same numeric value as the hexadecimal equivalent
of 0101011101010111, which would be 5757 hexadecimal, or 22,359 in deci-
mal (163 x 5 + 162 x 7 + 16 x 5 + 7).

Because the numeric equivalent of each four BCD binary bits must be nu-
merically equivalent to a decimal value, any four bit combination numerically
greater then 9 cannot be used, e.g., 1011 is not allowed because it is numeri-
cally equivalent to 11, which cannot be expressed as a single digit in decimal
notation. The binary bits 1011 are of course allowed in hexadecimal are a
equivalent to the hexadecimal digit C.

There are instructions provided to convert data either direction between BCD
and hexadecimal. Refer to 5-14 Data Conversion for details. Tables of binary
equivalents to hexadecimal and BCD digits are provided in the appendices
for reference.

Decimal Points Decimal points are used in timers only. The least significant digit represents
tenths of a second. All arithmetic instructions operate on integers only.

Converting Different Forms
of Data

���� ���� ��������� Section 3-2

��

3-3 IR (Internal Relay) Area
The IR area is used both as data to control I/O points, and as work bits to
manipulate and store data internally. It is accessible both by bit and by word.
In the C20H/C28H/C40H/C60H, the IR area is comprised of words 000 to
246.

Words in the IR area that are used to control I/O points are called I/O words.
Bits in I/O words are called I/O bits. Bits in the IR area which are not as-
signed as I/O bits can be used as work bits. IR area work bits are reset when
power is interrupted or PC operation is stopped.

I/O words are allocated to CPUs and Expansion I/O Units as follows. The
CPU is allocated the first four words, beginning with 000, and each Expan-
sion I/O Unit connected is allocated four words beginning with, in order, 010,
020, and 030. (Although each Unit is allocated four words, the number of bits
actually used depends on the type of Unit, i.e., C20H, C28H, or C40H.) The
first two words are allocated for inputs and the other two are allocated for
outputs. The following table illustrates I/O allocation for CPUs and Expansion
I/O Units.

Connected Unit Designation C20H or C28H C40H or C60H

CPU Input words IR 000 IR 000 to IR 001

Output words IR 002 IR 002 to IR 003

1st Expansion I/O Unit Input words IR 010 IR 010 to IR 011

Output words IR 012 IR 012 to IR 013

2nd Expansion I/O Unit Input words IR 020 IR 020 to IR 021

Output words IR 022 IR 022 to IR 023

3rd Expansion I/O Unit Input words IR 030 IR 030 to IR 031

Output words IR 032 IR 032 to IR 033

The following tables show the I/O bits used by each of the CPUs and Expan-
sion I/O Units. For the Expansion I/O Units, n = IR 010, IR 020, or IR 030,
depending on the order of connection. Unused bits in input words cannot be
used in the program. Unused bits in output words can be used as work bits,
as shown below.

Model Input bits Output bits Work bits

C20H IR 00000 to IR 00011 IR 00200 to IR 00207 IR 00208 to IR 00215

C28H IR 00000 to IR 00015 IR 00200 to IR 00211 IR 00212 to IR 00215

C40H IR 00000 to IR 00015
IR 00100 to IR 00107

IR 00200 to IR 00211
IR 00300 to IR 00303

IR 00212 to IR 00215
IR 00304 to IR 00315

C60H IR 00000 to IR 00015
IR 00100 to IR 00115

IR 00200 to IR 00211
IR 00300 to IR 00315

IR 00212 to IR 00215

Model Input bits Output bits Work bits

C20H Bits 00 to 11 of IR n Bits 00 to 07 of IR n+2 Bits 08 to 15 of IR n+2

C28H Bits 00 to 15 of IR n Bits 00 to 11 of IR n+2 Bits 12 to 15 of IR n+2

C40H Bits 00 to 15 of IR n
Bits 00 to 07 of IR n+1

Bits 00 to 11 of IR n+2
Bits 00 to 03 of IR n+3

Bits 12 to 15 of IR n+2
Bits 04 to 15 of IR n+3

C60H Bits 00 to 15 of IR n
Bits 00 to 15 of IR n+1

Bits 00 to 11 of IR n+2
Bits 00 to 15 of IR n+3

Bits 12 to 15 of IR n+2

High-speed Counter When the High-speed Counter instruction is used, IR 00000 is used as a
count input and IR 00001 is used as a hardware reset/disable bit.

CPUs

Expansion I/O Units

�� ��������
 ��
�� ���� Section 3-3

�� �������
 ��
�� ���� Section 3-4

�#

I/O Words If a Unit brings an input into the PC, the bit assigned to it is an input bit; if the
Unit sends an output from the PC, the bit is an output bit. To turn on an out-
put, the output bit assigned to it must be turned ON. When an input is turned
ON, the input bit assigned to it is turned ON also. These facts can be used in
the program to access input status and control output status through I/O bits.

I/O bits that are not assigned to I/O points can be used as work bits.

Input bits can be used to directly input external signals to the PC and can be
used in any order in programming. Each input bit can also be used in as
many instructions as required to achieve effective and proper control. They
cannot be used in instructions that control bit status, e.g., the Output, Differ-
entiation Up, and Keep instructions.

Output bits are used to output program execution results and can be used in
any order in programming. Because outputs are refreshed only once during
each cycle (i.e., once each time the program is executed), any output bit can
be used in only one instruction that controls its status, including OUT,
KEEP(11), DIFU(13), DIFD(14) and SFT(10). If an output bit is used in more
than one such instruction, only the status determined by the last instruction
will actually be output from the PC.

See 5-11-1 SHIFT REGISTER -- SFT(10) for an example that uses an output
bit in two ‘bit-control’ instructions.

IR 00200 to IR 00207 are used as interrupt outputs. For an explanation of
these, refer to 3-8 TC (Timer/Counter) Area.

3-4 SR (Special Relay) Area
The SR area contains flags and control bits used for monitoring PC opera-
tion, accessing clock pulses, and signalling errors. SR area word addresses
range from 247 through 255; bit addresses, from 24700 through 25515.

The following table lists the functions of SR area flags and control bits. Most
of these bits are described in more detail following the table. Descriptions are
in order by bit address except that Link System bits are grouped together
first.

Unless otherwise stated, flags are OFF until the specified condition arises,
when they are turned ON. Restart bits are usually OFF, but when the user
turns one ON then OFF, the specified Link Unit will be restarted. Other con-
trol bits are OFF until set by the user.

SR 25209 through 25213 are all control bits. They can be turned ON and
OFF from the program, i.e., they can be manipulated with the Output and
Output NOT instructions. Any of these bits not assigned specific functions
should be left OFF. Bits in words SR 247 through SR 250, only, can be used
as work bits if the Systems for which these bits are dedicated are not used by
the PC.

Word(s) Bit(s) Function

247 to 250 00 to 07 Reserved.

08 to 15 Reserved.

251 00 to 15 Not used.

252 00 to 07 Not used.

08 Dual-usage as:
RS-232C Communications Error Flag and CPU-mount-
ing Host Link Unit Communications Error Flag

09 Dual-usage as:
RS-232C Interface Restart Bit and CPU-mounting Host
Link Unit Restart Bit

Input Bit Usage

Output Bit Usage

�� �������
 ��
�� ���� Section 3-4

�'

Word(s) FunctionBit(s)

10 Interrupt Output Enable Bit

11 Forced Status Hold Bit

12 I/O Status Hold Bit

13 Reserved

14 to 15 Not used.

253 00 to 07 FAL number output area.

08 Battery Alarm Flag

09 Cycle Time Error Flag

10 to 12 Not used.

13 Always ON Flag

14 Always OFF Flag

15 First Cycle

254 00 1-minute clock pulse bit

01 0.02-second clock pulse bit

02 to 06 Reserved

07 Step Flag

08 to 15 Reserved

255 00 0.1-second clock pulse bit

01 0.2-second clock pulse bit

02 1.0-second clock pulse bit

03 Instruction Execution Error (ER) Flag

04 Carry (CY) Flag

05 Greater Than (GR) Flag

06 Equals (EQ) Flag

07 Less Than (LE) Flag

3-4-1 RS-232C/CPU-mounting Host Link Unit Flags and Control Bits

The RS-232C Interface and CPU-mounting Host Link Unit share an Error
Flag and a Restart Bit, as shown in the following table.

SR bit Functions

25208 1. RS-232C Interface Error Flag
2. CPU-mounting Host Link Unit Communications Error Flag

25209 1. RS-232C Restart Bit
2. CPU-mounting Host Link Unit Restart Bit

The Error Flag is turned ON when an error has occurred either in communi-
cations via the RS-232 Interface or between the CPU and the CPU-mounting
Host Link Unit. When the Restart Bit is turned ON and then OFF, both the
RS-232C Interface and the CPU-mounting Host Link Unit will be restarted.

3-4-2 Interrupt Output Enable Bit

Turn ON SR 25210 to enable interrupt outputs used with the high-speed
counter. SR 25210 is automatically turned OFF when power is turned ON,
and must be turned ON from the program of from a Programming Device. SR
25210 can be turned ON during operation. No interrupt outputs will be made
while SR 25210 is OFF.

�� �������
 ��
�� ���� Section 3-4

�(

3-4-3 Forced Status Hold Bit

SR 25211 determines whether or not the status of bits that have been force-
set or force-reset is maintained when switching between PROGRAM and
MONITOR mode to start or stop operation. If SR 25211 is on, bit status will
be maintained; if SR 25211 is off, all bits will return to default status when
operation is started or stopped. Unless the system operation instruction
(SYS(49)) is used to prevent it (see below), SR 25211 is turned off when
power to the PC is turned on. If power is interrupted while force-setting/reset-
ting bits, it will be necessary to repeat the operation.

SR 25211 is not effective when switching to run mode.

SR 25211 should be manipulated from a Peripheral Device, e.g., a Program-
ming Console or FIT.

The status of SR 25211 and thus the status of force-set/force-reset bits can
be maintained when power is turned off and on by inserting the System Op-
eration instruction (SYS(49)) into the program with the proper operand. If
SYS(49) is used in this way, the status of SR 25211 will be preserved when
power is turned off and on. If this is done and SR 25211 is ON, then the sta-
tus of force-set/force-reset bits will also be preserved, as shown in the follow-
ing table. The use of SYS(49) does not affect operation when switching to
run mode, i.e., force-set/force-reset bits always return to default status when
switching to RUN mode.

Status before shutdown Status at next startup

SR 25211 SYS(49) SR 25211 Force-set/reset bits

ON Executed ON Status maintained

Not executed OFF Default status

OFF Executed OFF Default status

Not executed OFF Default status

Refer to Section 5 Instruction Set for details on SYS(49).

The System Operation instruction (SYS(49)) can be used to turn off the oper-
ation of the battery alarm if desired, e.g., when DM 1000 to DM 1999 is
placed in ROM and a battery is not used in operation. Refer to Section 5 In-
struction Set for details.

3-4-4 I/O Status Hold Bit

SR 25212 determines whether or not the status of IR and LR area bits is
maintained when operation is started or stopped. If SR 25212 is on, bit status
will be maintained; if SR 25212 is off, all IR and LR area bits will be reset.
Unless the system operation instruction (SYS(49)) is used to prevent it (see
below), SR 25212 is turned off when power to the PC is turned on.

SR 25212 can be turned ON from the program using the Output instruction,
or it can be turned ON from a Peripheral Device.

Maintaining Status during
Startup

�� �������
 ��
�� ���� Section 3-4

��

The status of SR 25212 and thus the status of IR and LR area bits can be
maintained when power is turned off and on by inserting the System Opera-
tion instruction (SYS(49)) into the program with the proper operand. If
SYS(49) is used in this way, the status of SR 25212 will be preserved when
power is turned off and on. If this is done and SR 25212 is ON, then the sta-
tus of IR and LR area bits will also be preserved, as shown in the following
table.

Status before shutdown Status at next startup

SR 25212 SYS(49) SR 25212 IR and LR bits

ON Executed ON Status maintained

Not executed OFF Reset

OFF Executed OFF Reset

Not executed OFF Reset

Refer to Section 5 Instruction Set for details on SYS(49).

3-4-5 FAL (Failure Alarm) Area
A 2-digit BCD FAL code is output to bits 25300 to 25307 when the FAL or
FALS instruction is executed. These codes are user defined for use in error
diagnosis, although the PC also outputs FAL codes to these bits, such as one
caused by battery voltage drop.

This area can be reset by executing the FAL instruction with an operand of
00 or by performing a Failure Read Operation from the Programming Con-
sole.

3-4-6 Battery Alarm Flag
SR bit 25308 is turned ON if the voltage of the CPU battery drops. The ALM
indicator on the front of the CPU will also flash.

This bit can be programmed to activate an external warning for a low battery
voltage.

The System Operation instruction (SYS(49)) can be used to turn off the oper-
ation of the battery alarm if desired, e.g., when DM 1000 to DM 1999 is
placed in ROM and a battery is not used in operation. Refer to Section 5 In-
struction Set for details.

3-4-7 Cycle Time Error Flag
SR bit 25309 is turned ON if the cycle time exceeds 100 ms. The ALM indica-
tor on the front of the CPU will also flash. Program execution will not stop,
however, unless the maximum time limit set for the watchdog timer is ex-
ceeded. Timers may become inaccurate after the cycle time exceeds 100
ms.

If the Cycle Time Set Enable Bit in the system parameter area is ON, the
time used to determine a cycle time error, also in the system parameter area,
can be set. Refer to 3-6 DM (Data Memory) Area for details.

3-4-8 First Cycle Flag
SR bit 25315 is turned ON when PC operation begins and then turns OFF
after one cycle of the program. The First Cycle Flag is useful in initializing
counter values and other operations. An example of this is provided in 5-10
Timer and Counter Instructions.

3-4-9 Clock Pulse Bits
Five clock pulses are available to control program timing. Each clock pulse
bit is ON for the first half of the rated pulse time, then OFF for the second
half, i.e., each clock pulse has a duty factor of 50%.

Maintaining Status during
Startup

�� �������
 ��
�� ���� Section 3-4

�,

These clock pulse bits are often used with counter instructions to create tim-
ers. Refer to 5-10 Timer and Counter Instructions for an example of this.

Pulse width 1 min 0.02 s 0.1 s 0.2 s 1.0 s

Bit 25400 25401 25500 25501 25502

Bit 25400
1-min clock pulse

Bit 25401
0.02-s clock pulse

Bit 25500
0.1-s clock pulse

Bit 25501
0.2-s clock pulse

Bit 25502
1.0-s clock pulse Caution :

Because the 0.1-second and
0.02-second clock pulse bits have
ON times of 50 and 10 ms, respec-
tively, the CPU may not be able to
accurately read the pulses if pro-
gram execution time is too long.

0.1 s

0.05 s 0.05 s

1.0 s

0.5 s 0.5 s

0.2 s

0.1 s 0.1 s

1 min.

30 s 30 s

0.02 s

0.01 s 0.01 s

3-4-10 Step Flag
SR bit 25407 is turned ON for one cycle when step execution is started with
the STEP(08) instruction.

3-4-11 Instruction Execution Error Flag, ER
SR bit 25503 is turned ON if an attempt is made to execute an instruction
with incorrect operand data. Common causes of an instruction error are
non-BCD operand data when BCD data is required, or an indirectly ad-
dressed DM word that is non-existent. When the ER Flag is ON, the cur-
rent instruction will not be executed.

3-4-12 Arithmetic Flags
The following flags are used in data shifting, arithmetic calculation, and com-
parison instructions. They are generally referred to only by their two-letter
abbreviations.

Caution These flags are all reset when the End instruction is executed, and therefore
cannot be monitored from a programming device.

Refer to 5-11 Data Shifting, 5-13 Data Comparison, 5-15 BCD Calculations,
and 5-16 Binary Calculations for details.

Carry Flag, CY SR bit 25504 is turned ON when there is a carry in the result of an arithmetic
operation or when a rotate or shift instruction moves a “1” into CY. The con-
tent of CY is also used in some arithmetic operations, e.g., it is added or sub-
tracted along with other operands. This flag can be set and cleared from the
program using the Set Carry and Clear Carry instructions.

�"

Greater Than Flag, GR SR bit 25505 is turned ON when the result of a comparison shows the first of
two operands to be greater than the second.

Equal Flag, EQ SR bit 25506 is turned ON when the result of a comparison shows two oper-
ands to be equal or when the result of an arithmetic operation is zero.

Less Than Flag, LE SR bit 25507 is turned ON when the result of a comparison shows the first of
two operands to be less than the second.

Note The four arithmetic flags are turned OFF when END(01) is executed.

3-5 AR (Auxiliary Relay) Area
AR word addresses extend from AR 00 to AR 27; AR bit addresses extend
from AR 0000 to AR 2715. Most AR area words and bits are dedicated to
specific uses, such as transmission counters, flags, and control bits, and can-
not be used for any other purpose. The few bits that are not currently as-
signed cannot be accessed by the user for any purpose. An overview of the
AR area is provided in the following table. Details are provided in order of
address thereafter. Words/bits not listed in the following table are not used
and cannot be accessed by the program.

The AR area retains status during power interruptions or when changing to
PROGRAM mode.

AR Area Overview
Word(s) Bit(s) Function

02 00 to 10 Reversible Drum Counter (RDM(60)) Reset Bits

11 High-speed Counter Reset Bit

12 High-speed Counter Reset Flag

03 00 to 10 Reversible Drum Counter (RDM(60)) Direction Bits

11 High-speed Counter Bank Bit

04 00 to 07 RS-232C Communications Error Code

13 RS-232C Reception Impossible Flag

14 RS-232C Reception Completed Flag

15 RS-232C Transmission Possible Flag

05 00 to 07 RS-232C Reception Counter

08 to 15 RS-232C Transmission Counter

06 00 to 15 RS-232C Bytes Received Area

07 08 TERMINAL Mode Input Cancel Bit

13 Error History Overwrite Bit

14 Error History Reset Bit

15 Error History Enable Bit

08 00 to 15 RS-232C Bytes Input Area

12 00 to 15 System Parameter Warning Flags

13 00 to 13 System Parameter Warning Flags

14 System Parameter Backup Flag

15 System Parameter/Backup Area Checksum Flag

14 00 to 03 System Command Response Code

04 to 06 Not used

07 System Command Completion Flag

08 to 11 System Command Command Code

12 to 14 Not used

15 System Command Execution Bit

15 00 to 07 Startup Operating Mode

17 00 to 15 Current Time Area

�� ���!�
���� ��
�� ���� Section 3-5

�4

Word(s) FunctionBit(s)
18 to 21 00 to 15 Calendar/clock Area (AR 2113: Seconds Round-off Bit; AR 2114: Stop Bit; AR 2115: Set Bit)

22 00 to 15 TERMINAL Mode Key Bits

23 00 to 15 Power-off Counter

24 05 SCAN(18) Cycle Time Flag

15 Programming Console or Peripheral Interface Unit Mounted Flag

25 00 to 15 FALS-generating Address

26 00 to 15 Maximum Cycle Time Area

27 00 to 15 Current Cycle Time Area

3-5-1 Reversible Drum Counter Bits
AR 0200 to AR 0210 (Reversible Drum Counter (RDM(60)) Reset Bits) are
turn ON by the user to reset reversible counters created using RDM(60). The
number of the bit corresponds to the last two digits of the TC area bit used to
define the counter, i.e., AR 0200 resets CNT 500, AR 0201 resets CNT 501,
etc.

AR 0300 to AR 0310 (Reversible Drum Counter (RDM(60)) Direction Bits)
are turn ON and OFF by the user to set the direction that the reversible
counters operate. The number of the bit corresponds to the last two digits of
the TC area bit used to define the counter, i.e., AR 0200 resets CNT 500, AR
0201 resets CNT 501, etc. If a bit is OFF, the corresponding counter will in-
crement (count up); if a bit is ON, the corresponding counter will decrement.
These bits are refreshed each cycle in MONITOR or RUN mode.

3-5-2 High-speed Counter Bits
AR 0211 (High-speed Counter Reset Bit) is used to reset the high-speed
counter created using HDM(61) or using the interrupt drum output function.
The number of the bit corresponds to the last two digits of the TC area bit
used to define the counter, i.e., AR 0211 resets CNT 511.

AR 0212 (High-speed Counter Reset Flag) is turned ON for one cycle after
the high-speed counter created with HDM(61) or with the interrupt drum out-
put function is reset via the hardware reset input (i.e., not with AR 0211).

AR 0311 (High-speed Counter Bank Bit) is turned ON or OFF by the user to
designate the counter table bank to be used for the high-speed counter. If AR
0311 is ON, bank 1 will be used; if AR 0311 is OFF, bank 0 will be used.

These bits are refreshed each cycle while in MONITOR or RUN mode. Refer
to Section 5 Instruction Set for details on HDM(61) and Section 3 Memory
Areas for details on the interrupt drum output function.

3-5-3 RS-232C Communications Error Code
When an error has occurred in RS-232C communications, the RS-232C In-
terface Communications Error Flag is turned ON, and a code that indicates
the type of error is output to AR 0400 to AR 0407. These codes are in hexa-
decimal and are as follows:

00: Parity error
01: Framing error
02: Overrun error
03: FCS error

These bits are refreshed each cycle while using the RS-232C interface.

�� ���!�
���� ��
�� ���� Section 3-5

��

3-5-4 RS-232C Communications Flags

These 3 flags indicate the current status of RS-232C communications. These
bits are refreshed each cycle while the RS-232C interface is being used in
ASCII I/O Mode.

Reception Impossible Flag The RS-232C Reception Impossible Flag (AR 0413) is turned ON when new-
ly received data cannot be input. There are two possible reasons that the
new data cannot be input:

1, 2, 3... 1. The previously received data has not yet been input by PIN(64), the
RS-232C PORT INPUT instruction.

2. An error occurred during the previous reception.

Reception Completed Flag The RS-232C Reception Completed Flag (AR 0414) is turned ON when an
end code or 200 bytes of data have been received at the RS-232C interface.

Transmission Possible Flag The RS-232C Transmission Possible Flag (AR 0415) is turned ON when data
can be transmitted from the RS-232C interface (i.e., when data is not being
transmitted).

3-5-5 RS-232C Communications Counters

When a transmission is received on the RS-232C interface, the number of
characters is counted in hexadecimal and then output to AR 0500 to AR
0507 (RS-232C Reception Counter) to assist the user in debugging RS-232C
interface communications. This counter is used for all RS-232C interface op-
erating modes, as well as for error characters. The counter can be reset by
turning SR 25209 ON and then OFF.

AR 0508 to AR 0515 (RS-232C Transmission Counter) operates the same as
AR 0500 to AR 0507, except that it operates for transmisions sent from the
PC through the RS-232C interface.

These counters are refreshed every cycle.

3-5-6 RS-232C Bytes Received Area

When a transmission is received in ASCII I/O Mode at the RS-232C inter-
face, the number of bytes of data is counted in BCD and then output to AR
06. The start and end codes are not counted.

Counting stops when the RS-232C Reception Completed Flag (AR 0414) is
turned ON. The value stored in AR 06 will not be updated after this flag is
turned on even if new data is received at the RS-232C interface. The content
of AR 06 is reset to 0 when PIN(64), the RS-232C PORT INPUT instruction,
is executed.

AR 06 is refreshed every cycle while the RS-232C interface is being used in
ASCII I/O Mode.

3-5-7 TERMINAL Mode Input Cancel Bit

AR 0708 is turned ON by the user to cancel a key equivalent during TERMI-
NAL mode Programming Console operation. (Refer to Section 7 Program
Debugging and Execution for details on terminal mode operation.)

This bit is refreshed each cycle.

�� ���!�
���� ��
�� ���� Section 3-5

��

3-5-8 Error History Bits
AR 0713 (Error History Overwrite Bit) is turned ON or OFF by the user to
control overwriting of records in the Error History Area in the DM area. Turn
AR 0713 ON to overwrite the oldest error record each time an error occurs
after 10 have been recorded. Turn OFF AR 0713 to store only the first 10
records that occur each time after the history area is cleared.

AR 0714 (Error History Reset Bit) is turned ON and then OFF by the user to
reset the Error Record Pointer (DM 0969) and thus restart recording error
records at the beginning of the history area.

AR 0715 (Error History Enable Bit) is turned ON by the user to enable error
history storage and turned OFF to disable error history storage.

Refer to 3-6 DM (Data Memory) Area for details on the Error History Area.

Error history bits are refreshed each cycle.

3-5-9 RS-232C Bytes Input Area
While AR 06 contains the number of bytes received in ASCII I/O Mode at the
RS-232C interface, AR 08 contains the number of bytes of data (BCD) ac-
tually input to the PC by PIN(64), the RS-232C PORT INPUT instruction.

Normally, the bytes input will equal the bytes received, but in some cases the
numbers will differ. The two most likely cases are described below.

1, 2, 3... 1. One operand of PIN(64) specifies the number of bytes to input. If the val-
ue of this operand is less than the content of AR 06, then the bytes input
will not equal the bytes received.

2. PIN(64) might be executed before the RS-232C Reception Completed
Flag (AR 0414) is turned ON. In this case, the number of bytes received
would continue increasing as more data was received.

The content of AR 08 is updated each time that PIN(64) is executed.

3-5-10 System Parameter Flags
The system parameters are checked for errors when the system command is
executed or the system parameters are reset at start-up. If a word in the sys-
tem parameters has an unacceptable value, its corresponding System Pa-
rameter Warning Flag will be turned ON.

The 30 bits from AR 1200 through AR 1313 correspond to the 30 words of
the Parameter Area (DM 0900 to DM 0929) as shown below.

AR 1200: DM 0900 AR 1201: DM 0901 AR 1202: DM 0902
AR 1203: DM 0903 AR 1204: DM 0904 AR 1205: DM 0905
AR 1206: DM 0906 AR 1207: DM 0907 AR 1208: DM 0908
AR 1209: DM 0909 AR 1210: DM 0910 AR 1211: DM 0911
AR 1212: DM 0912 AR 1213: DM 0913 AR 1214: DM 0914
AR 1215: DM 0115 AR 1300: DM 0916 AR 1301: DM 0917
AR 1302: DM 0918 AR 1303: DM 0919 AR 1304: DM 0920
AR 1305: DM 0921 AR 1306: DM 0922 AR 1307: DM 0923
AR 1308: DM 0924 AR 1309: DM 0925 AR 1310: DM 0926
AR 1311: DM 0927 AR 1312: DM 0928 AR 1313: DM 0929

If a Warning Flag is turned ON, the default value for the system parameter
will be used. Bits assigned to unused DM words are always OFF.

AR 1314 is turned ON when the System Command Execute Bit has been
force-set and remains ON until reset by the execution of a system command
with a command code of 3.

System Parameter Warning
Flags

System Parameter Backup
Flag

�� ���!�
���� ��
�� ���� Section 3-5

��

AR 1315 is turned ON to indicate an error in the Parameter and Backup
Areas checksum.

Refer to 3-5-11 System Command Bits for details on system command bits
and to 3-6 DM (Data Memory) Area for details on the Parameter and Backup
Areas.

These bits are refreshed when PC power is turned on and when the System
Command Execute Bit is force-set.

3-5-11 System Command Bits
When the system command has been executed, a response code is placed
in AR 1400 to AR 1403 to indicate the completion status of the command.
The System Command Completion Flag (AR 1407) should be checked to
confirm that system command execution has been completed before reading
these codes. The response codes are as follows:

Response
code

Name Meaning

0 Normal completion The system command has been successfully
executed.

1 Undefined
command error

The system command was executed with an
undefined command code.

2 Write-enable error Memory is either write-protected (i.e., the write
enable switch is ON) or the memory is EPROM.

3 Sum check error The checksum for the Parameter Area was not
set when the system command was executed,
i.e., a system command with a command code
of 1 has not been executed.

AR 1407 is turned ON to indicate that the system command has completed
execution. This Flag is turned ON even if the system command was not suc-
cessfully executed.

A command code is set by the user in AR 1408 to AR 1411 to indicate how
the system command is to be executed while the System Command Execu-
tion Bit is turned ON. The command code must be written into AR 1408 to AR
1411 using the Hex/BCD Data Change or the Binary Data Change from the
Programming Console or other Peripheral Device. A system command will
not be executed if the command code is set using any other operation or if
set from the program.

The command codes are as follows:

Command
code

Name Meaning

1 Parameter set The contents of the Parameter Area (DM 0900
to DM 0929) are set into the system, the value of
each parameter is checked for validity, all invalid
values are replaced with the default values, and
a checksum is generated.

2 Parameter backup The contents of the Parameter Area (DM 0900
to DM 0929) is transferred to the Parameter
Backup Area (DM 1900 to 1929), a checksum is
generated, the data in the Parameter Backup
Area is enabled, and AR 1314 (System
Parameter Backup Flag) is turned ON. Because
the Parameter Backup Area is contained in the
Memory Unit, parameter backup will not be
possible if the Memory Unit is write-protected or
EPROM.

3 Backup disable The data contained in the Parameter Backup
Area is disabled and AR 1314 (System
Parameter Backup Flag) is turned OFF.

Parameter/Backup Area
Checksum Flag

System Command
Response Code

System Command
Completion Flag

System Command
Command Code

�� ���!�
���� ��
�� ���� Section 3-5

�#

Command
code

MeaningName

4 Parameter clear All words in the Parameter Area (DM 0900 to
DM 0929) are turned OFF (i.e., set to zero).

5 General parameter
set

Works in the same way as 01, but only DM 0900
to DM 0905 are set.

6 High-speed counter
parameter set

Works in the same way as 01, but only DM 0905
to DM 0919 are set.

7 RS-232C
parameter set

Works in the same way as 01, but only DM 0920
to DM 0929 are set.

AR 1415 is turned ON by the execution of a system command. The system
command is actually executed when the Programming Console or other Pe-
ripheral Device is used to change the contents of AR 1408 to AR 1414 (Sys-
tem Command Command Code).

To enable system command execution, AR 1415 must be force-set from a
Peripheral Device (e.g., using the Force Set/Reset operation from the Pro-
gramming Console). System command execution will not be enable is AR
1415 is set using any other operation or if set from the program. A system
command will also not be executed if the command code is written by any
method other than the Hex/BCD Data Change or the Binary Data Change
operation from the Programming Console or equivalent operation from anoth-
er Peripheral Device.

AR 1415 is automatically turned OFF by the system unless force-set from a
programming device.

Refreshing AR 14 is refreshed when a system command is executed.

Executing the System Command
The system command can be executed by manipulating the content of AR 14
with a Programming Device, or by executing SYS(49), the SET SYSTEM in-
struction.

The following examples demonstrate how to execute a system command by
manipulating the content of AR 14 with Programming Devices.

Example 1: Programming Console

1, 2, 3... 1. Set the PC to either PROGRAM or MONITOR mode. (Press CLR,
MONTR, and turn the mode switch to PROGRAM or MONITOR.)

2. Use the Hexadecimal/BCD Data Modification operation to change any
system parameters that need to be changed. (Refer to 7-2-4 Hexadeci-
mal/BCD Data Modification for details.)

3. Execute the system command to put the new system parameters into
effect.

a) Force-set AR 1415 (System Command Execute Bit).

SHIFT
CONT

#
SHIFT HR

B
1

E
4

B
1

F
5 MONTR SHIFT SET

b) Write the desired command code into AR 1408 to AR 1411 using the
Hex/BCD Data Change or the Binary Data Change operation.

c) Verify that the content of AR 14 is 8x80 (x is the command code en-
tered in step 3b), indicating a successful execution.

d) Cancel the force-set status of AR 1415.

System Command Execute
Bit

�� ���!�
���� ��
�� ���� Section 3-5

�'

Example 2: GPC
1, 2, 3... 1. Connect the PC to the GPC.

2. Set the PC to either PROGRAM or MONITOR mode.

CTRL PC CON CTRL PROG or MONTR

3. Switch to the monitor screen and use the Hexadecimal/BCD Data Modifi-
cation operation to change any system parameters that need to be
changed.

O
0

A CMNT

CHG
DM

P
ENT WRITE ENTAddress New setting

4. Execute the system command to put the new system parameters into
effect.
a) Force-set AR 1415 (System Command Execute Bit).

SFT SFT HR
L

1
1

B
4

4

E
1

1

B
5

5

F
ENT SFT SETFUN

A

b) Write the desired command code into AR 1408 to AR 1411 using the
Hex/BCD Data Change or the Binary Data Change operation. Enter
the command code (1 to 7) at the ∆ in the key sequence below.

SFT SFT HR
L

1
1

B
4

4

E
ENT WRITE O

0

A
O

0

A
ENT

CH
S

O

c) Verify that the content of AR 14 is 8∆80 (∆ is the command code en-
tered in step 4b), indicating a successful execution.

d) Cancel the force-set status of AR 1415.

SFT SFT HR
L

1
1

B
4

4

E
1

1

B
5

5

F
ENT NOT

C

CONT
#

R

Example 3: FIT
1, 2, 3... 1. In the FIT System Setup, set the PC model to C200H and the PC inter-

face to either Peripheral Interface or Host LInk depending on how the FIT
is connected. Switch to the monitor screen. Refer to the FIT Operation
Manual for details.

2. Connect the PC to the FIT and set the PC to either PROGRAM or MONI-
TOR mode.

SHIFT PC CON SHIFT PROG or MONTR

3. Select Data Monitor and use the data modification operation to change
any system parameters that need to be changed.

F9Address New settingLR
K

MENU ENTER ENTER ENTER

4. Execute the system command to put the new system parameters into
effect.
a) Force-set AR 1415 (System Command Execute Bit).

SHIFT SHIFT 1
1

B
4

4

E
1

1

B
5

5

F
SHIFT SETHR

L

CONT
#

R
ENTER

b) Write the desired command code into AR 1408 to AR 1411 using the
data modification operation. Enter the command code (1 to 7) at the ∆
in the key sequence below.

SHIFT SHIFT 1
1

B
4

4

E
F9

CH
S

O
O

0

A
O

0

A
HR

L
ENTER ENTER

�� ���!�
���� ��
�� ���� Section 3-5

�(

c) Verify that the content of AR 14 is 8∆80 (∆ is the command code en-
tered in step 4b), indicating a successful execution.

d) Cancel the force-set status of AR 1415.

F3

3-5-12 Startup Operating Mode

AR 1500 to AR 1507 contain a code in hexadecimal that indicate the operat-
ing mode that will be used when the PC is started if the Preserve Mode code
(01) is set in bits 08 through 15 of DM 0900 (backup: DM 1900). These
codes are as follows:

00: PROGRAM mode
01: MONITOR mode
02: RUN mode

These bits are refreshed each cycle.

3-5-13 Current Time Area

AR 17 contains the current time in hours and minutes that is used when
times are compared with BCMP(68). AR 1700 to AR 1703 contain the min-
utes; AR 1704 to AR 1707 contain the tens of minutes; AR 1708 to AR 1711
contain the hours; and AR 1712 to AR 1715 contain the tens of hours.

The current time area is available only on the following models:
CAAH-C5AA-A, CAAH-C6AA-A, CAAH-C7AA-A.
Refer to Section 5 Instruction Set for programming details.

The Current Time Area is refreshed each cycle while it is operational.

3-5-14 Calendar/Clock Area and Bits

Calendar/clock Area If AR 2114 (Stop Bit) is OFF, then the date, day, and time will be available in
BCD in AR 18 to AR 20 and AR 2100 to AR 2108 as shown below. This area
can also be controlled with AR 2113 (Seconds Round-off Bit) and AR 2115
(Set Bit).

AR word AR bits Contents Possible values

18 00 to 07 Seconds 00 to 99

08 to 15 Minutes 00 to 59

19 00 to 07 Hours 00 to 23 (24-hour system)

08 to 15 Day of month 01 to 31 (adjusted by month and for leap year)

20 00 to 07 Month 1 to 12

08 to 15 Year 00 to 99 (Rightmost two digits of year)

21 00 to 07 Day of week 00 to 06 (00: Sun.; 01: Mon.; 02: Tues.;
03: Wed.; 04: Thurs.; 05: Fri.; 06: Sat.)

Seconds Round-off Bit AR 2113 is turned ON to round the seconds of the Calendar/clock Area to
zero, i.e., if the seconds is 29 or less, it is merely set to 00; if the seconds is
30 or greater, the minutes is incremented by 1 and the seconds is set to 00.

Stop Bit AR 2114 is turned OFF to enable the operation of the Calendar/clock Area
and ON to stop the operation.

�� ���!�
���� ��
�� ���� Section 3-5

��

Set Bit AR 2115 is used to set the Calendar/clock Area as described below. This
data must be in BCD and must be set within the limits for the Calendar/clock
Area given above.

1, 2, 3... 1. Turn ON AR 2114 (Stop Bit).
2. Set the desired date, day, and time, being careful not to turn OFF AR

2114 (Stop Bit) when setting the day of the week (they’re in the same
word). (On the Programming Console, the Bit/Digit Monitor and Force
Set/Reset Operations are the easiest ways to set this data.)

3. Turn ON AR 2115 (Set Bit). The Calendar/clock will automatically start
operating with the designated settings and AR 2114 and AR 2115 will
both be turned OFF.

The Calendar/clock Area and Bits are refreshed each cycle while operational.

3-5-15 TERMINAL Mode Key Bits
If the Programming Console is mounted to the PC and is in TERMINAL
mode, any inputs on keys 0 through 9 (including characters A through F, i.e,
keys 0 through 5 with SHIFT) will turn on a corresponding bit in AR 22. TER-
MINAL mode is entered either through Programming Console operations or
by executing KEY(62).

The bits in AR 22 correspond to Programming Console inputs as follows:

Bit Programming Console input

AR 2200 0

AR 2201 1

AR 2202 2

AR 2203 3

AR 2204 4

AR 2205 5

AR 2206 6

AR 2207 7

AR 2208 8

AR 2209 9

AR 2210 A

AR 2211 B

AR 2212 C

AR 2213 D

AR 2214 E

AR 2215 F

Refer to Section 5 Instruction Set for details on KEY(62) and to Section 7
Program Debugging and Execution for details on the TERMINAL mode.

AR 22 is refreshed each cycle.

3-5-16 Power-off Counter
AR 23 provides in 4-digit BCD the number of times that the PC power has
been turned off. This counter can be reset as necessary using the Hex/BCD
Change operating from the Programming Console or other Peripheral De-
vice. The Power-off Counter is refreshed every time the power is turned OFF.

3-5-17 SCAN(18) Cycle Time Flag
AR 2405 is turned ON when the cycle time set with SCAN(18) is shorter than
the actual cycle time.

AR 2405 is refreshed every cycle while the PC is in RUN or MONITOR
mode.

�� ���!�
���� ��
�� ���� Section 3-5

�,

3-5-18 Programming Console/Peripheral Interface Unit Mounted Flag
AR 2415 is turned ON to indicate that a Programming Console or Peripheral
Interface Unit is mounted to the CPU.

AR 2415 is refreshed each cycle.

3-5-19 FALS-generating Address
AR 25 contains (in 4-digit BCD) the address generating a user-programmed
FALS code or a system FALS code 9F (cycle time error). Refer to 5-20-1
FAILURE ALARM -- FAL(06) and SEVERE FAILURE ALARM -- FALS(07) for
details on FALS codes.

AR 25 is refreshed each cycle while an FALS code is being generated.

3-5-20 Cycle Time Indicators
AR 26 (Maximum Cycle Time Area) contains the maximum cycle time that
has occurred since program execution was begun and AR 27 (Current Cycle
Time Area) contains the present cycle time. Both of these times are to the
tenths of a millisecond in 4-digit BCD.

AR 26 and AR 27 are refreshed each cycle.

3-6 DM (Data Memory) Area
The DM area is divided into various parts as described in the following table.

Addresses User program
read/write

Usage

DM 0000 to DM 0899 Read/write General User Area

DM 0900 to DM 0929 Read/write Parameter Area

DM 0930 to DM 0968 --- Not used.

DM 0969 to DM 0999 Read/write Error History Area

DM 1000 to DM 1899 Read only General User Area

DM 1900 to DM 1929 Read only Parameter Backup Area

DM 1930 to DM 1989 --- Not used.

DM 1990 to DM 1999 Read only User Program Header

Only the General User Areas can be used for general data storage and ma-
nipulation. Other DM words are used to control various aspects of PC opera-
tion and should never be used for any purposes other than their designed
purposes. These words (DM 0900 to DM 0999 and DM 1900 to DM 1999)
are known as System DM and are not cleared by the Data Clear operation.

Although composed of 16-bit words like any other data area, all data in any
part of the DM area cannot be specified by bit for use in instructions with bit
operands, such as LD, OUT, AND, and OR, nor can DM words be used with
the Shift instruction.

The DM area retains status during power interruptions.

Note When writing System DM to PROM via the GPC or to ROM via the FIT or
LSS, use the DM Data Transfer operation to transfer System DM to the Pe-
ripheral Device before writing it to the chip.

Indirect Addressing Normally, when the content of a data area word is specified for an instruction,
the instruction is performed directly on the content of that word. For example,
suppose MOV(21) is performed with DM 0100 as the first operand and LR 20
as the second operand. When this instruction is executed, the content of DM
0100 is moved to LR 20.

�� ����� ���	�� ���� Section 3-6

�"

It is possible, however, to use indirect DM addresses as the operands for
many instructions. To indicate an indirect DM address, BDM is input with the
address of the operand. With an indirect address, the content of the operand
does not contain the actual data to be used. Instead, it contains the address
of another DM word, the content of which will actually be used in the instruc-
tion. If BDM 0100 was used in our example above and the content of DM
0100 is 0324, then BDM 0100 actually means that the content of DM 0324 is
to be used as the operand in the instruction, and the content of DM 0324 will
be moved to LR 20.

MOV(21)

�DM 0100

LR 00

Word Content
DM 0099 4C59
DM 0100 0324
DM 0101 F35A

DM 0324 5555
DM 0325 2506
DM 0326 D541

5555 moved
to LR 00.

Indicates
DM 0324

Indirect
address

3-6-1 General User Areas
There are two sections of the DM area available for use in programming.

DM 0000 to DM 0899 and DM 1000 to DM 1899 can be used for manipula-
tion and storage of data. DM 1000 to DM 1899 are in the read-only area, and
cannot be written to from the program, i.e., they must be written to from a
Programming device.

3-6-2 Parameter and Parameter Backup Areas
The Parameter Area (DM 0900 to DM 0929) and the Parameter Backup Area
(DM 1900 to DM 1929) are used together to control various aspects of PC
operation, enabling greater system flexibility.

The Parameter Backup Area is contained in the Memory Unit and can be
written only by using the system command in the AR area. Also, to use the
system command to write data into the Parameter Backup Area, the Memory
Unit must be writeable, i.e., not write-protected and not EPROM.

System Command The system command executes the 7 basic operations that control the Pa-
rameter Area. There are two ways to execute the system command:

1, 2, 3... 1. Manipulating the content of AR 14 with a Programming Device. Refer to
3-5-11 System Command Bits for details.

2. Executing SYS(49), the SET SYSTEM instruction. Refer to 5-20-5 SET
SYSTEM -- SYS(49) for details.

Basic Operation The Parameter Backup Area is allocated exactly like the Parameter Area and
is used to back up Parameter Area settings. The procedure for using these
areas is as follows:

1, 2, 3... 1. Data is first set into the Parameter Area from a Peripheral Device or via
programming instructions.

2. The system command is used to make these new settings effective (i.e.,
write them into the system) and generate a checksum for them. The
checksum is used to check the accuracy of data in later operations. Each
value is checked when it is set into the system and if an invalid value is
discovered, the default value is used.

�� ����� ���	�� ���� Section 3-6

�4

3. The system command is next used to transfer Parameter Area settings to
the Parameter Backup Area and make it the valid area.

4. To change parameters once they have been set into the Parameter
Backup Area, the Parameter Backup Area is disabled using the system
command and then settings in the Parameter are changed and the oper-
ation is repeated.

The system command can also be used to clear the contents of the Parame-
ter Area.

Caution Input data into the Parameter Area carefully. If parameter settings are incor-
rect, the PC may not operate correctly. If a setting is found to be invalid, the
default setting is used.

Checksum Whenever the system command is used to enable data in the Parameter
Area or transfer data to the Parameter Backup Area, a checksum is gener-
ated. This checksum is a numeric value computed from the contents of the
area and copied along with it. The copy (or the original file) can then be
checked later to see if the same value (i.e., the checksum) results from the
same computations. If the checksum disagrees with the previous one, it is
assumed that data has changed and is no longer valid.

The checksums for the Parameter and Parameter Backup Areas are checked
whenever new data is set, including data set at startup. If a checksum is
found to be incorrect, the data is not used and alternate measures are taken
(see next section for details).

Operation On Startup When the PC is started, the parameters must be reset into the system. If the
Parameter Backup Area is the valid area and it’s checksum is okay, its con-
tents are transferred to the Parameter Area and from there it is set into the
system.

If the Parameter Backup Area is not valid or if its checksum is incorrect, the
data in the Parameter Area is set into the system, assuming its checksum is
okay.

If the checksum for the Parameter Backup Area is incorrect, the default val-
ues for all settings in the Parameter Area are set into the system and an 9F
FAL number is output and AR 1315 (Parameter/Backup Area Checksum
Flag) is turned ON.

When parameters are finally set into the system, they are each checked for
validity and default parameters are set for any invalid ones regardless of the
method used to set parameters.

The following table shows the allocations of words and bits in the Parameter
and Parameter Backup Areas. The first DM address is the Parameter Area
address. The contents of these words can be changed either via program-
ming instructions or via a Peripheral Device (e.g., Programming Console).
The second DM address (given in parenthesis) is the Parameter Backup
Area address. The contents of these words can be updated by executing the
system command with a command code to backup parameters (02).

Parameter and Parameter
Backup Area Allocations

�� ����� ���	�� ���� Section 3-6

��

The following table is designed to first provide the name and sometimes a
basic description of the function of each, and then, if necessary, to detail the
operation of each bit. The top line of the header thus applies to the first (and
sometimes only) line of the table for each DM address. The next line applies
to the remaining lines for each DM address. (Here, “address” applies to the
4-bit word address without the bit number, which is not considered part of a
DM address.)

Address Name/Description Default

Bit Content/Meaning

DM 0900 (DM 1900) Operating Mode on Startup
Bits 00 to 07 designate the PC mode on startup if bits 08 to 15 are set to
02. If bits 08 to 15 are set to 00, the PC startup mode will be designated
by the key switch on the Programming Console. If bits 08 to 15 are set to
01, the PC startup mode will be the same mode as it was when the PC
was last turned off.

Key switch

00 to 07 00: PROGRAM
01: MONITOR
02: RUN

08 to 15 00: As set on Programming Console key switch
01: Mode when PC was last turned off (in AR 15)
02: Mode set in bits 00 to 07, above

DM 0901 (DM 1901) Cycle Time Limit
A cycle time limit can be set in bits 00 to 07 that will be valid if bits 08 to
10 are set to 01. If bits 08 to 15 are set to 00, the cycle time limit will be
100 ms.

100 ms

00 to 07 Cycle time limit in units of ten milliseconds. Setting is
between 00 and 99 in BCD resulting in cycle time limits
between 000 and 990 ms, respectively.

08 to 15 00: Bits 00 to 07 disabled (i.e., cycle time limit is 100 ms)
01: Bits 00 to 07 enabled

DM 0902 (DM 1902) Peripheral Device Service Time
The percent of the cycle time allocated to servicing the Programming
Console and other Peripheral Devices connected to the CPU can be set
in bits 00 to 07. This value will be valid if bits 08 to 10 are set to 01. If bits
08 to 15 are set to 00, the service time will be 5%. The Device will be
serviced for at least 1 ms regardless of the cycle time and this setting.

5%

00 to 07 Percent of cycle time allocated to Device servicing between
00 and 99 in BCD.

08 to 15 00: Bits 00 to 07 disabled (i.e., servicing set to 5%)
01: Bits 00 to 07 enabled

DM 0903 (DM 1903) RS-232C Interface Service Time
The percent of the cycle time allocated to servicing the RS-232C interface
can be set in bits 00 to 07. This value will be valid if bits 08 to 10 are set
to 01. If bits 08 to 15 are set to 00, the service time will be set to 5%. The
RS-232C Interface will be serviced for at least 1 ms regardless of the
cycle time and this setting.

5%

00 to 07 Percent of cycle time allocated to RS-232C interface
servicing between 00 and 99 in BCD.

08 to 15 00: Bits 00 to 07 disabled (i.e., servicing set to 5%)
01: Bits 00 to 07 enabled

DM 0904 (DM 1904) Programming Console Message Language Bits
Bits 00 to 07 are not used. Bits 08 to 15 determine the language
displayed on the Programming Console.

English

08 to 15 00: English
01: Japanese
02: German
03: French
04: Italian
05: Spanish

�� ����� ���	�� ���� Section 3-6

��

Address DefaultName/Description
Content/MeaningBit

DM 0905 (DM 1905) General High-speed Counter Bits
Bits 00 to 07 are the Enable Bits for high-speed counter interrupt outputs.
An interrupt output is enabled if it Enable Bit is ON. Bits 08 through 15 are
various controls for the high-speed counter.

No counter

00 IR 00200 Enable Bit

01 IR 00201 Enable Bit

02 IR 00202 Enable Bit

03 IR 00203 Enable Bit

04 IR 00204 Enable Bit

05 IR 00205 Enable Bit

06 IR 00206 Enable Bit

07 IR 00207 Enable Bit

08 to 10 Final step for bank 0 (0 to 7)

11 to 13 Final step for bank 1 (0 to 7)

14 Hard Reset Enable Bit (Turn ON to enable hard reset.)

15 High-speed Counter Enable Bit (Turn ON to enable counter.)

DM 0906 (DM 1906) High-speed Counter Interrupt Output Table
The bits in this and the following seven DM words are used to set the
pattern that will be output when the high-speed counter is set for
operation according to this output table. Each set of eight bits determines
the status that will be output to IR 00200 to IR 00207 for each step of
interrupt outputs. Refer to 3-8 TC (Timer/Counter) Area for details on the
high-speed counter.

00 Step 0 output status for IR 00200

01 Step 0 output status for IR 00201

02 Step 0 output status for IR 00202

03 Step 0 output status for IR 00203

04 Step 0 output status for IR 00204

05 Step 0 output status for IR 00205

06 Step 0 output status for IR 00206

07 Step 0 output status for IR 00207

08 Step 1 output status for IR 00200

09 Step 1 output status for IR 00201

10 Step 1 output status for IR 00202

11 Step 1 output status for IR 00203

12 Step 1 output status for IR 00204

13 Step 1 output status for IR 00205

14 Step 1 output status for IR 00206

15 Step 1 output status for IR 00207

�� ����� ���	�� ���� Section 3-6

��

Address DefaultName/Description
Content/MeaningBit

DM 0907 (DM 1907) High-speed Counter Interrupt Output Table (continued)
This word continues the table started in DM 0906.

00 Step 2 output status for IR 00200

01 Step 2 output status for IR 00201

02 Step 2 output status for IR 00202

03 Step 2 output status for IR 00203

04 Step 2 output status for IR 00204

05 Step 2 output status for IR 00205

06 Step 2 output status for IR 00206

07 Step 2 output status for IR 00207

08 Step 3 output status for IR 00200

09 Step 3 output status for IR 00201

10 Step 3 output status for IR 00202

11 Step 3 output status for IR 00203

12 Step 3 output status for IR 00204

13 Step 3 output status for IR 00205

14 Step 3 output status for IR 00206

15 Step 3 output status for IR 00207

DM 0908 (DM 1908) High-speed Counter Interrupt Output Table (continued)
This word continues the table started in DM 0906.

00 Step 4 output status for IR 00200

01 Step 4 output status for IR 00201

02 Step 4 output status for IR 00202

03 Step 4 output status for IR 00203

04 Step 4 output status for IR 00204

05 Step 4 output status for IR 00205

06 Step 4 output status for IR 00206

07 Step 4 output status for IR 00207

08 Step 5 output status for IR 00200

09 Step 5 output status for IR 00201

10 Step 5 output status for IR 00202

11 Step 5 output status for IR 00203

12 Step 5 output status for IR 00204

13 Step 5 output status for IR 00205

14 Step 5 output status for IR 00206

15 Step 5 output status for IR 00207

�� ����� ���	�� ���� Section 3-6

�#

Address DefaultName/Description
Content/MeaningBit

DM 0909 (DM 1909)3 High-speed Counter Interrupt Output Table (continued)
This word continues the table started in DM 0906.

00 Step 6 output status for IR 00200

01 Step 6 output status for IR 00201

02 Step 6 output status for IR 00202

03 Step 6 output status for IR 00203

04 Step 6 output status for IR 00204

05 Step 6 output status for IR 00205

06 Step 6 output status for IR 00206

07 Step 6 output status for IR 00207

08 Step 7 output status for IR 00200

09 Step 7 output status for IR 00201

10 Step 7 output status for IR 00202

11 Step 7 output status for IR 00203

12 Step 7 output status for IR 00204

13 Step 7 output status for IR 00205

14 Step 7 output status for IR 00206

15 Step 7 output status for IR 00207

DM 0910 to DM 0917
(DM 1910 to DM 1917)

High-speed Counter Step Table
These words contain the width of each step of the counter. The total width
of the counter is the sum of all the widths set below. As shown below, the
rightmost digit of the DM address is the same as the corresponding step.

Step 0: DM 0910
Step 1: DM 0911
Step 2: DM 0912
Step 3: DM 0913
Step 4: DM 0914
Step 5: DM 0915
Step 6: DM 0916
Step 7: DM 0917

Set the rightmost two digits to 11 or higher (although 00 is O.K.) to
prevent the poor responsiveness to high-frequency input signals. For
example, set values of 0010 and 5001 would risk inaccurate counting,
while set values of 2011 and 3000 would not.

0000 (10000) when
the counter is
enabled.

DM 0918 and DM 0919
(DM 1918 and
DM 1919)

Not used. ---

DM 0920 to DM 0926
(DM 1920 to DM 1926)

RS-232C Interface Settings
These words are used to set various aspects of communications through
the RS-232C interface. DM 0920 bits 00 to 07 are used to select standard
or custom communications settings. If these bits are set to 01, the
settings in DM 0921 are used.

See below.

DM 0920 (DM 1920) 00 to 07 Standard/Custom Communications Format Selection
00: Standard

(1 start bit, 7-bit data length, even parity, 2 stop bits,
9,600 baud)

01: Custom settings
(i.e., according to contents of DM 0921)

Standard

08 to 15 RS-232C Mode
00: Host link
01: Memory upload/download
02: ASCII I/O mode

Host link

�� ����� ���	�� ���� Section 3-6

�'

Address DefaultName/Description
Content/MeaningBit

DM 0921 (DM 1921) 00 to 07 Baud Rate (if DM 0920 bits 00 to 07 are 01)
00: 300 bps
01: 600 bps
02: 1,200 bps
03: 2,400 bps
04: 4,800 bps*
05: 9,600 bps*

9600 bps

08 to 15 Data Format (if DM 0920 bits 00 to 07 are 01)
00: 1 start bit, 7-bit data, 2 stop bits, even parity
01: 1 start bit, 7-bit data, 2 stop bits, odd parity
02: 1 start bit, 8-bit data, 1 stop bits, no parity
03: 1 start bit, 8-bit data, 2 stop bits, no parity
04: 1 start bit, 8-bit data, 1 stop bits, even parity
05: 1 start bit, 8-bit data, 1 stop bits, odd parity

1 start bit, 7-bit
data, 2 stop bits,
even parity

DM 0922 (DM 1922) 00 to 07 Transmission Delay
In tenths of milliseconds between 00 and 99 (BCD,
correspond to 000 and 990 ms delays, respectively)

0 ms

08 to 15 RTS/CTS Control
00: Without RTS/CTS
01: With RTS/CTS

Without RTS/CTS

DM 0923 (DM 1923) 00 to 07 Not used. ---

08 to 15 Unit number for host link mode between 00 and 31 in BCD #0

DM 0924 (DM 1924) 00 to 07 Not used. ---

08 to 15 Transmission Format for Memory Upload/Download
00: Intel HEX
01: Motorola S-Record

Intel HEX

DM 0925 (DM 1925) 00 to 07 Starting Code
This byte contains the starting code used in POUT(63) and
PIN(64) transmissions when bits 08 to 15 contain 01.

No starting code

08 to 15 Starting Code/No Starting Code Selection
00: No starting code
01: Starting code set in bits 00 to 07

DM 0926 (DM 1926) 00 to 07 End Code
This byte contains the end code used in POUT(63) and
PIN(64) transmissions when bits 08 to 15 contain 01.

No end code

08 to 15 End Code/No End Code Selection
00: No end code
01: End code set in bits 00 to 07

DM 0927 to DM 0929
(DM 1927 to DM 1929)

Not used. ---

*Higher baud rates may produce errors in RS-232C communications if both RS-232C interface and Peripheral Interface
Unit are used.

3-6-3 Error History Area

DM 0969 to DM 0999 are used to store up to 10 records that show the na-
ture, time, and date of errors that have occurred in the PC. The time and date
entries in these records are only recorded in PCs that are equipped with the
calendar/clock function.

The Error History Area will store system-generated or
FAL(06)/FALS(07)-generated error codes whenever AR 0715 (Error History
Enable Bit) is ON. Refer to Section 9 Troubleshooting for details on error
codes.

�� ����� ���	�� ���� Section 3-6

�(

Area Structure Error records occupy three words each stored between DM 0970 and DM
0999. The last record that was stored can be obtained via the content of DM
0969 (Error Record Pointer). The record number, DM words, and pointer val-
ue for each of the ten records are as follows:

Record Addresses Pointer value

None N.A. 0000

1 DM 0970 to DM 0972 0001

2 DM 0973 to DM 0975 0002

3 DM 0976 to DM 0978 0003

4 DM 0979 to DM 0981 0004

5 DM 0982 to DM 0984 0005

6 DM 0985 to DM 0987 0006

7 DM 0988 to DM 0990 0007

8 DM 0991 to DM 0993 0008

9 DM 0994 to DM 0996 0009

10 DM 0997 to DM 0999 000A

Although each of them contains a different record, the structure of each re-
cord is the same: the first word contains the error code; the second and third
words, the day and time. The error code will be either one generated by the
system or by FAL(06)/FALS(07); the time and date will be the date and time
from AR 18 and AR 19 (Calender/date Area). Also recorded with the error
code is an indication of whether the error is fatal (08) or non-fatal (00). This
structure is shown below.

Word Bit Content

First 00 to 07 Error code

08 to 15 00 (non-fatal) or 08 (fatal)

Second 00 to 07 Seconds

08 to 15 Minutes

Third 00 to 07 Hours

08 to 15 Day of month

Operation When the first error code is generated with AR 0715 (Error History Enable
Bit) turned ON, the relevant data will be placed in the error record after the
one indicated by the History Record Pointer (initially this will be record 1) and
the Pointer will be incremented. Any other error codes generated thereafter
will be placed in consecutive records until the last one is used. Processing of
further error records is based on the status of AR 0713 (Error History Over-
write Bit).

If AR 0713 is ON and the Pointer contains 000A, the next error will be written
into record 10, the contents of record 10 will be moved to record 9, and so on
until the contents of record 1 is moved off the end and lost, i.e., the area
functions like a shift register. The Record Pointer will remain set to 000A.

If AR 0713 is OFF and the Pointer reaches 000A, the contents of the Error
History Error will remain as it is and any error codes generate thereafter will
not be recorded until AR 0713 is turned OFF or until the Error History Area is
reset.

The Error History Area can be reset by turning ON and then OFF AR 0714
(Error History Reset Bit). When this is done, the Record Pointer will be reset
to 0000, the Error History Area will be reset (i.e., cleared), and any further
error codes will be recorded from the beginning of the Error History Area. AR
0715 (Error History Enable Bit) must be ON to reset the Error History Area.

�� ����� ���	�� ���� Section 3-6

��

3-6-4 User Program Header Area

DM 1990 to DM 1999 can be used to record the name, version, and creation/
alteration data of the user program to aid in program management. This in-
formation (except for the seconds) can also be displayed on the Program-
ming Console by pressing CLR, SFT, and MONTR (see Section 7 Program
Debugging and Execution for details).

The creation date will not be updated if programs are transferred into the PC
from other than the C20H/C28H/C40H/C60H. It will be updated only if in-
structions are written (not transferred), deleted, or inserted from a Program-
ming Device (e.g., Programming Console, GPC, or FIT). If the CPU is
equipped with the Calendar/clock Area, the creation date will be updated
whenever instructions are written, deleted, or inserted, or when timer/counter
SVs are set.

If non-C20H/C28H/C40H/C60H programs are transferred into the PC, the
Programming Console or other Peripheral Device must be used to artificially
write data to the header area.

The User Program Header Area is structured as shown below.

Address* Bits Contents

DM 1990 00 to 07 Program version number in BCD without the decimal

08 to 15 Name/version Enable Bit (Set to 5A to enable the name
and version. These will not be displayed on the
Programming Console unless enabled. Any other value
will disable the name and version.)

DM 1991 to
DM 1994

00 to 15 Program name in ASCII, eight characters. Characters
are displayed on the Programming Console in order
from DM 1991 to DM 1994, with the leftmost ASCII
character in each word (bits 08 to 15) displayed to the
left of the rightmost (bits 00 to 07).

DM 1995 00 to 07 Seconds of creation date

08 to 15 Minutes of creation date

DM 1996 00 to 07 Hour of creation date

08 to 15 Day of month of creation date

DM 1997 00 to 07 Month of creation date

08 to 15 Year of creation date

DM 1995 to
DM 1999

Not used.

Note *Use the hexadecimal addresses shown below when using a commercially
available PROM writer to read data from a User Program Header Area that
has been stored in ROM.

DM 1990 (bits 08 to 15): 07BC
DM 1990 (bits 00 to 07): 07BD

. . .

. . .

. . .

DM 1997 (bits 08 to 15): 07CA
DM 1997 (bits 00 to 07): 07CB

�� ����� ���	�� ���� Section 3-6

�� ������"�	����� ���� Section 3-8

�,

3-7 HR (Holding Relay) Area
The HR area is used to store/manipulate various kinds of data and can be
accessed either by word or by bit. Word addresses range from HR 00
through HR 99; bit addresses, from HR 0000 through HR 9915. HR bits can
be used in any order required and can be programmed as often as required.

The HR area retains status when the system operating mode is changed,
when power is interrupted, or when PC operation is stopped.

HR area bits and words can be used to to preserve data whenever PC op-
eration is stopped. HR bits also have various special applications, such as
creating latching relays with the Keep instruction and forming self-holding
outputs. These are discussed in Section 4 Writing and Entering Programs
and Section 5 Instruction Set.

3-8 TC (Timer/Counter) Area
The TC area is used to create and program timers and counters and holds
the Completion flags, set values (SV), and present values (PV) for all timers
and counters. All of these are accessed through TC numbers ranging from
TC 000 through TC 511. Each TC number is defined as either a timer or
counter using one of the following instructions: TIM, TIMH(15), CNT,
CNTR(12), RDM(60) or HDM(61). No prefix is required when using a TC
number in a timer or counter instruction.

Once a TC number has been defined using one of these instructions, it can-
not be redefined elsewhere in the program either using the same or a differ-
ent instruction. If the same TC number is defined in more than one of these
instructions or in the same instruction twice, an error will be generated during
the program check. There are no restrictions on the order in which TC num-
bers can be used.

Once defined, a TC number can be designated as an operand in one or more
of certain set of instructions other than those listed above. When defined as a
timer, a TC number designated as an operand takes a TIM prefix. The TIM
prefix is used regardless of the timer instruction that was used to define the
timer. Once defined as a counter, the TC number designated as an operand
takes a CNT prefix. The CNT is also used regardless of the counter instruc-
tion that was used to define the counter.

TC numbers can be designated for operands that require bit data or for oper-
ands that require word data. When designated as an operand that requires
bit data, the TC number accesses the completion flag of the timer or counter.
When designated as an operand that requires word data, the TC number ac-
cesses a memory location that holds the PV of the timer or counter.

TC numbers are also used to access the SV of timers and counters from a
Programming Device. The procedures for doing so using the Programming
Console are provided in 7-2 Monitoring Operation and Modifying Data.

The TC area retains the SVs of both timers and counters during power inter-
ruptions. The PVs of timers are reset when PC operation is begun and when
reset in interlocked program sections. Refer to 5-7 INTERLOCK and INTER-
LOCK CLEAR -- IL(02) and ILC(03) for details on timer and counter operation
in interlocked program sections. The PVs of counters are not reset at these
times.

�� ������"�	����� ���� Section 3-8

�"

Note that in programming “TIM 000” is used to designate three things: the
Timer instruction defined with TC number 000, the completion flag for this
timer, and the PV of this timer. The meaning in context should be clear, i.e.,
the first is always an instruction, the second is always a bit, and the third is
always a word. The same is true of all other TC numbers prefixed with TIM or
CNT.

3-8-1 High-speed Counter
The C20H/C28H/C40H/C60H are equipped with a built-in high-speed counter
that can be activated either through use of the interrupt drum output function
or through the HIGH-SPEED DRUM COUNTER instruction (HDM(61)). The
high-speed counter is allocated to TC 511. Even if the interrupt drum output
function is used, TC 511 can be used like any other TC bit, i.e., it can be
used to access the Completion Flag and PV for the counter. The PV for the
high-speed counter, however, is always reset to 0000 when power to the PC
is shut off.

The high-speed counter is an incremental ring counter that can be set for
between 1 and 80,000 counts per revolution. All counter settings are in the
Parameter and Parameter Backup Area of System DM. These settings in-
clude a High-speed Counter Enable Bit, a Hardware Reset Enable Bit, Inter-
rupt Output Enable Bits, an Interrupt Output Table, and a Step Table. These
are described below and also listed in tabular form in 3-6 DM (Data Memory)
Area.

There are also various controls for the high-speed counter in the AR area,
including a High-speed Counter Reset Bit, a High-speed Counter Reset Flag,
and a High-speed Counter Bank Bit.

The overall operation of the high-speed counter is as shown below.

High-speed
counter

High-speed counter controls
in System DM

High-speed Counter Enable Bit
Hardware Reset Enable Bit
Set Patterns
Interrupt Output Enable Bits
Interrupt Output Table
Set Table (Banks 0 and 1)

TC 511
Counter’s PV

Reset
input

Count
input

Interrupt outputs
(IR 00200 to
IR 00207)

TC 511 Completion Flag

High-speed Counter
Reset Flag (AR 0212)

Hardware Reset/Disable
Input (IR 00001)

High-speed Counter
Reset Bit (AR 0211)

PC RUN signal

High-speed Counter
Bank Bit (AR 0311)

Count input (IR 0000)

Interrupt Output
Enable Bit (25210)

�� ������"�	����� ���� Section 3-8

#4

Counter Controls and I/O
The high-speed counter is controlled and operates through the following IR
and AR bits. The remaining controls for the high-speed counter are in the DM
area and are described in 3-8-2 System DM High-speed Counter Parame-
ters.

Counter Input The high-speed counter will be incremented on the rising edge of IR 00000
as long as the hardware reset/disable input (IR 00001) and the High-speed
Counter Reset Bit (AR 0211) are both OFF and the PC is in either MONITOR
or RUN mode. Inputs are not counted in PROGRAM mode.

The pulse width for the counter input must be at least 250 �s (2 kHz with a
1:1 duty rate).

Hardware Reset/Disable IR 00001 (on the CPU) can be used either as a hardware reset and a counter
disable, or it can be used as a counter disable only. When IR 0001 is used as
a hard reset, AR 0212 will be turned ON for one cycle.

The Hardware Reset/Disable must remain ON for at least 250 �s. The reset
is serviced immediately, i.e., without being delayed by the cycle time.

The high-speed counter can also be reset by turning on AR 0211. The high-
speed counter will be reset when either this bit, IR 00001, or both are ON.

The High-speed Counter Reset Bit is not serviced until after the END(01) in-
struction is executed, i.e., servicing is delayed by the cycle time.

AR 0212 will turn ON for one cycle when IR 00001 has come ON to reset the
high-speed counter.

CNT 511 Completion Flag The completion flag of CNT will turn ON for one cycle each time a set value
for a step has been reached. This flag can be used to activate a carry or as a
normal counter completion output.

The following figure shows the relationship between the counter input, the
present value, the completion flag, and the PC cycle. This figure assumes
that only step 0 has been set and that it is set to 500.

Counter input

PV

Completion Flag

PC cycles

0299 0300 0499 0000 0001 0002

AR 0311 is used with the interrupt output function. Eight steps each can be
recorded into two banks and then the status of AR 0311 can be used to con-
trol which bank is currently being used.

If AR 0311 is ON, bank 1 is used; if it is OFF, bank 0 is used. If the bank is
changed during counter operation, the present value and the set value will be
reset. When switching from bank 1 to bank 0, counting will start from zero in
step 0. When switching from bank 0 to bank 1, counting will start from zero in
the step designated by the Beginning Step for Bank 1 setting.

Interrupt Outputs IR 00200 through 00207 can be used with the high-speed counter as inter-
rupt drum outputs. Output tables can be set for these bits by step. These out-
puts are refreshed on an interrupt basis, i.e., they are not affected by the
cycle time. Refer to 3-8-3 Interrupt Drum Outputs for details. SR 25210 (In-
terrupt Output Enable Bit) must be ON to use these outputs.

High-speed Counter Reset
Bit

High-speed Counter Reset
Flag

High-speed Counter Bank
Bit

�� ������"�	����� ���� Section 3-8

#�

3-8-2 System DM High-speed Counter Parameters
System DM contain several parameters that can be used to control high-
speed counter operations. Specific bit allocations are provided in 3-6 DM
(Data Memory) Area. This section explains operational aspects that are af-
fected by these parameters.

Interrupt Output Enable Bits Each of bits 00 to 07 of DM 0905 (DM 1905) correspond to one of the inter-
rupt drum outputs for the high-speed counter. If the bit corresponding to an
interrupt output is ON, that output will be refreshed in every step according to
the output tables.

Bank Range Settings Bits 08 to 10 of DM 0905 (DM 1905) are used to specify the final step for
bank 0 between 0 and 7. Bank 0 will thus extend from step 0 to the step set
here. Bits 11 to 13 are the beginning step for bank 1 and can be set between
0 and 7. Bank 1 will thus range from the step set here to set 7.

The steps for bank 0 and bank 1 may overlap, e.g., bank 0 may range from
step 0 through step 5 at the same time that bank 1 ranges from step 2 to step
7.

Hard Reset Enable Bit Bit 14 of DM 0905 (DM 1905) controls the operation of the hardware reset/
disable (IR 00001). If bit 14 is turned ON, IR 00001 will function to both dis-
able and reset the high-speed counter. If bit 14 is OFF, IR 00001 will function
only to disable the high-speed counter; it will not reset it.

Bit 15 of DM 0905 (DM 1905) is turned ON to enable the high-speed counter
and turned OFF to disable it.

Interrupt Output Table The bits in DM 0906 through DM 0909 (DM 1906 through DM 1909) are used
to set the patterns that will be output when the interrupt drum outputs are
used. Each set of eight bits determines the status that will be output to IR
00200 to IR 00207 for each step of interrupt outputs. Refer to 3-8-3 Interrupt
Drum Outputs for details.

DM 0910 to DM 0917 (DM 1910 to DM 1917) contain the width settings
(counts per revolution) for each step of the counter. There are a total of eight
steps, each of which can be set to between 1 and 10,000 counts per revolu-
tion (a setting of 0000 is equivalent to 10,000). Data must be in BCD. The
total width of the counter is the sum of all the step widths being used in the
active bank. As shown below, the rightmost digit of the DM address is the
same as the corresponding step.

Step 0 width: DM 0910
Step 1 width: DM 0911
Step 2 width: DM 0912
Step 3 width: DM 0913
Step 4 width: DM 0914
Step 5 width: DM 0915
Step 6 width: DM 0916
Step 7 width: DM 0917

The current step will be reset when PC power it turned ON, when the high-
speed counter is reset, and when the bank designation is changed. In bank
0, the current step is always reset to step 0; in bank 1, to the step designated
in the Beginning Step for Bank 1.

When the interrupt outputs are not used, the counter width can still be set to
a value greater than 10,000 by setting widths for multiple step. The total
width will be the sum of all width settings, producing a maximum of 80,000
counts per revolution.

Note The rightmost two digits of the width settings must be 11 or higher (although
00 is O.K.) to prevent the poor responsiveness to high-frequency input sig-

High-speed Counter Enable
Bit

High-speed Counter Step
Table

�� ������"�	����� ���� Section 3-8

#�

nals. For example, set values of 0010 and 5001 would risk inaccurate count-
ing, while set values of 2011 and 3000 would not.

3-8-3 Interrupt Drum Outputs
The high-speed counter can be used to activate interrupt outputs (IR 00200
through IR 00207) according to patterns set in output tables for each of up to
eight steps. These outputs are refreshed on an interrupt basis, i.e., they are
not delayed by the cycle time. SR 25210 (Interrupt Output Enable Bit) must
be ON to use the interrupt outputs.

The interrupt drum outputs can be used to control cam switches and similar
devices according to inputs received from incremental rotary recorders.

Although the interrupt outputs are not delayed by the cycle time, there is
delay of up to 1.5 ms from the time that the counter reaches its set value.
There is an additional delay of up to 2 ms when a Peripheral Interface Unit is
being used.

Interrupt Output Bits IR 00200 through IR 00207 are used as the interrupt outputs. These bits are
available for use as normal outputs when the high-speed counter is not being
used. Note: these bits cannot be output directly from the program when they
are enabled as the interrupt outputs.

When not using IR 00200 through IR 00207 as interrupt outputs, be sure to
disable them by turning off the corresponding Interrupt Output Enable Bits.

Output Steps and Banks There are eight steps available that can be set up in two banks to control the
interrupt outputs. Each bank can be from 1 to 8 steps in length and can con-
trol anywhere from 1 to 8 of the interrupt outputs. The settings to control
these parameters are described in 3-8-2 System DM High-speed Counter
Parameters.

When counter operation begins, all enabled interrupt outputs are refreshed
according to the pattern set in the output table for the first step (step 0 if bank
0 is being used; the designated beginning step if bank 1 is being used).

When the counter reaches the value set for the first step, the enabled inter-
rupt outputs are again refreshed, this time according to the output table pat-
terns set for the second step. This operation continues until the count for the
last step has been reached (the designated last step for bank 0 or step 7 for
bank 1), at which time the count is reset and operation repeats from the first
step.

Example This example describes operation when the End Step for Bank 0 is set to 3,
the Beginning Step for Bank 1 is set to 4, all interrupt outputs are enabled,
and the step widths and output table are set as shown below.

Bank Step Width Output patterns

00200 00201 00202 00203 00204 00205 00206 00207

0 0 1,500 1 0 0 0 0 0 0 0

0 1 3,000 0 1 0 0 0 0 0 0

0 2 700 1 0 1 0 0 0 0 0

0 and 1 3 1,800 0 0 0 1 1 0 0 0

1 4 3,500 0 0 0 0 1 0 0 1

1 5 1,500 0 0 0 0 0 1 0 0

1 6 1,200 0 0 0 0 0 1 1 0

1 7 4,000 0 0 0 0 0 0 1 1

The above table shows that bank 0 runs from step 0 through step 3 and has
a total width of 7,000 and that bank 1 runs from step 3 through step 7 and

Interrupt Output Response
Time

�� ������"�	����� ���� Section 3-8

#�

has a total width of 12,000. In drum form, the operation of bank 0 and bank 1
appears as follows:

Bank 0 Bank 1

Step 0
1,500 counts

Step 1
3,000 counts

Step 2
700 counts

Step 3
1,800 counts

Step 7
4,000 counts

Step 3
1,800 counts

Step 5
1,500 counts

Step 6
1,200 counts

Step 4
3,500 counts

0

1,500

4,500

5,200

0

1,800

5,3006,800

8,000

In terms of output timing, operation would appear as shown below. Only the
outputs that are set to turn ON during operation of each bank are shown.

Bank 0

IR 00200

5000 6000 0000 1000 2000 3000 4000 5000 6000 0000 1000 2000

IR 00201

IR 00202

IR
00203
IR 00204

Bank 1

IR 00203

11000 0000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 0000 1000

IR 00204

IR 00205

IR
00206
IR 00207

�� �����	���� ��
�� ���� Section 3-11

##

3-9 LR (Link Relay) Area

The LR area is used as a common data area by PCs that support a PC Link
System. Certain words will be allocated as the write words of each PC.
These words are written by the PC and automatically transferred to the same
LR words in the other PCs in the PC Link System. The write words of the
other PCs are transferred in as read words so that each PC can access the
data written by the other PCs in the PC Link System. Only the write words
allocated to the particular PC will be available for writing; all other words may
be read only. Refer to the PC Link System Manual for details.

The LR area is accessible either by bit or by word. LR area word addresses
range from LR 00 to LR 63; LR area bit addresses, from LR 0000 to LR
6315. In PCs that do not support a PC Link System, the LR area is available
for as work words or work bits.

LR area data is not retained when the power is interrupted, when the PC is
changed to PROGRAM mode, or when it is reset in an interlocked program
section. Refer to 5-7 INTERLOCK and INTERLOCK CLEAR -- IL(02) and
ILC(03) for details on interlocks.

3-10 Program Memory

Program Memory is where the user program is stored. Memory Units come in
different types, i.e., RAM, EEPROM, and ROM Units. There are different
sizes for ROM. (Refer to the Installation Guide for details.)

The amount of Program Memory available is 2878 words, regardless of the
type of chip used for ROM. The RAM and EEPROM chips are already in-
stalled and ready for use; the ROM chip must be purchased separately.

For every memory chip, 1218 words are used for the DM area and other pur-
poses. The remainder of the chip’s capacity is available for the Program
Memory. If a 27128 or 27256 EPROM chip is installed, only the first 4K of
memory is usable. Refer to the memory chip table in Appendix A Standard
Models for details.

To store instructions in Program Memory, input the instructions through the
Programming Console, or download programming data from a FIT, floppy
disk, cassette tape, or host computer. Refer to the end of Appendix A Stan-
dard Products for information on FIT and other special products. Program-
ming Console operations, including those for program input, are described in
Section 7 Program Debugging and Execution.

3-11 TR (Temporary Relay) Area

The TR area provides eight bits that are used only with the LD and OUT in-
structions to enable certain types of branching ladder diagram programming.
The use of TR bits is described in Section 4 Writing and Entering Programs.

TR addresses range from TR 0 though TR 7. Each of these bits can be used
as many times as required and in any order required as long as the same TR
bit is not used twice in the same instruction block.

#'

��
�
�� #

$�����% ��� �������% &��%�� �

���� ��� ��� �/"�#��� �� (#��� � �"� #�� �����" � �������� �� ��� ��
 # (#��� �#���� ��#
�#� "��
�#�5 ��"� ��
 �� "���

�#� �� � ������5 #�� �/��� ��
 �
) �� ������� �� ��� ��� ���� �# #�� ���� � (���� �� (#��� � ��� ��� �� �� �#����

��#
�#� #�� ��� ��� � � �/��� ���
 ��� �� ��� �� �� ��� ��� ���� ���� �� "��
�#����
 �� ������(�� ��
������ � �����
��

����
��

��� 4#��� ��������� �$

��)�� ��� ��� ���������
� �$

��� 4#��� �#���� %�#
�#�� �&

����� 4#��� ����� �*

����	 �������� ���� �*

����� �#����)�� ��� ���� !+

����� �<��<� #�� �<��<� ��� !	

����! ��� 7�%)�� ��� ��� !	

����$ ��
�� 4���3)�� ��� ���� !�

����& �����
 ��� �"��)�� ��� ���� $�

��� ��� ���
�#����
 ������� $�

����� �7��)�'� #�� ���,��7 ����� $�

����	 ��� :��(�#�� $�

����� �� ����� $!

��! ���"#�# ��� ��� �"��# ��� $$

��!�� 7� ����
 �� �#������ $$

��!�	 ���#���
 ������ $&

��!�� ���#���
 7���� ����#
�� $0

��$)�"� ��
5 ��������
5 #�� ����3��
 �� ���
�#� &+

��$�� ,� ��
 #�� ��#���
 ���� ���
�#� ������ '������ &+

��$�	 7� ����
 �� 7�� ��
 ���
�#�� &�

��$�� ����3��
 �� ���
�#� &�

��$�� %��"�#���
 �� ����� ���� &$

��$�! ���
�#� ,�#����� &&

��$�$)���� ��
 #�� %��� ��
)�� ��� ���� &0

��$�& 4�#�����
)�� ��� ��� ����� *�

��$�* ;��"� *$

��& ��� ������
 4� , # �� **

��&�� %)887�7��)'�7 <� #�� %)887�7��)'�7 %�6� **

��&�	 :77� **

��&�� ,�����#�� #����
 4� � -,�#�. *0

��* 6��3 4� � -)� ���#� ���#��. *0

��0 ���
�#����
 ����#� ���� 0�

���+ ���
�#� 7/��� ��� 0�

#(

4-1 Basic Procedure
There are several basic steps involved in writing a program. Sheets that can
be copied to aid in programming are provided in Appendix F Word Assign-
ment Recording Sheets and Appendix G Program Coding Sheet.

1, 2, 3... 1. Obtain a list of all I/O devices and the I/O points that have been assigned
to them and prepare a table that shows the I/O bit allocated to each I/O
device.

2. If the PC has any Units that are allocated words in data areas other than
the IR area or are allocated IR words in which the function of each bit is
specified by the Unit, prepare similar tables to show what words are used
for which Units and what function is served by each bit within the words.

3. Determine what words are available for work bits and prepare a table in
which you can allocate these as you use them.

4. Also prepare tables of TC numbers and jump numbers so that you can
allocate these as you use them. Remember, the function of a TC number
can be defined only once within the program; jump numbers 01 through
99 can be used only once each. (TC number are described in 5-10 Timer
and Counter Instructions; jump numbers are described later in this sec-
tion.)

5. Draw the ladder diagram.

6. Input the program into the CPU. When using the Programming Console,
this will involve converting the program to mnemonic form.

7. Check the program for syntax errors and correct these.

8. Execute the program to check for execution errors and correct these.

9. After the entire Control System has been installed and is ready for use,
execute the program and fine tune it if required.

10. Back up the program.

The basics of ladder-diagram programming and conversion to mnemonic
code are described in 4-3 Basic Ladder Diagrams. Preparing for and input-
ting the program via the Programming Console are described in 4-4 The Pro-
gramming Console through 4-6 Inputting, Modifying, and Checking the Pro-
gram. The rest of Section 4 covers more advanced programming, program-
ming precautions, and program execution. All special application instructions
are covered in Section 5 Instruction Set. Debugging is described in Section 7
Debugging and Execution. Section 9 Troubleshooting also provides informa-
tion required for debugging.

4-2 Instruction Terminology
There are basically two types of instructions used in ladder-diagram pro-
gramming:

1, 2, 3... 1. Instructions that correspond to the conditions on the ladder diagram and
are used in instruction form only when converting a program to mne-
monic code.

2. Instructions that are used on the right side of the ladder diagram and are
executed according to the conditions on the instruction lines leading to
them.

���������	� ������	
	�� Section 4-2

#�

Most instructions have at least one or more operands associated with them.
Operands indicate or provide the data on which an instruction is to be per-
formed. These are sometimes input as the actual numeric values, but are
usually the addresses of data area words or bits that contain the data to be
used. For instance, a MOVE instruction that has IR 000 designated as the
source operand will move the contents of IR 000 to some other location. The
other location is also designated as an operand. A bit whose address is des-
ignated as an operand is called an operand bit; a word whose address is
designated as an operand is called an operand word. If the actual value is
entered as a constant, it is preceded by # to indicate that it is not an address.

Other terms used in describing instructions are introduced in Section 5 In-
struction Set.

4-3 Basic Ladder Diagrams
A ladder diagram consists of one line running down the left side with lines
branching off to the right. The line on the left is called the bus bar; the
branching lines, instruction lines or rungs. Along the instruction lines are
placed conditions that lead to other instructions on the right side. The logical
combinations of these conditions determine when and how the instructions at
the right are executed. A ladder diagram is shown below.

00000 06315

Instruction

Instruction

00403

00001

HR 0109 LR 250325208 24400

00501 00502 00503 00504

24401

00100 00002

00010

00011

00003 HR 0050 00007 TIM 001 LR 0515

21001 21002

00405

21005 21007

As shown in the diagram above, instruction lines can branch apart and they
can join back together. The vertical pairs of lines are called conditions. Con-
ditions without diagonal lines through them are called normally open condi-
tions and correspond to a LOAD, AND, or OR instruction. The conditions with
diagonal lines through them are called normally closed conditions and corre-
spond to a LOAD NOT, AND NOT, or OR NOT instruction. The number
above each condition indicates the operand bit for the instruction. It is the
status of the bit associated with each condition that determines the execution
condition for following instructions. The way the operation of each of the in-
structions corresponds to a condition is described below. Before we consider
these, however, there are some basic terms that must be explained.

Note When displaying ladder diagrams with a GPC, a FIT, or LSS, a second bus
bar will be shown on the right side of the ladder diagram and will be con-
nected to all instructions on the right side. This does not change the lad-
der-diagram program in any functional sense. No conditions can be placed
between the instructions on the right side and the right bus bar, i.e., all in-
structions on the right must be connected directly to the right bus bar. Refer
to the GPC, FIT, or LSS Operation Manual for details.

#���� $�%%�� �������� Section 4-3

#,

4-3-1 Basic Terms

Each condition in a ladder diagram is either ON or OFF depending on the
status of the operand bit that has been assigned to it. A normally open condi-
tion is ON if the operand bit is ON; OFF if the operand bit is OFF. A normally
closed condition is ON if the operand bit is OFF; OFF if the operand bit is
ON. Generally speaking, you use a normally open condition when you want
something to happen when a bit is ON, and a normally closed condition when
you want something to happen when a bit is OFF.

Instruction

Instruction

00000

00000
Instruction is executed
when IR 00000 is ON.

Instruction is executed
when IR 00000 is OFF.

Normally open
condition

Normally closed
condition

In ladder diagram programming, the logical combination of ON and OFF con-
ditions before an instruction determines the compound condition under which
the instruction is executed. This condition, which is either ON or OFF, is
called the execution condition for the instruction. All instructions other than
LOAD instructions have execution conditions.

The operands designated for any of the ladder instructions can be any bit in
the IR, SR, HR, AR, LR, or TC areas. This means that the conditions in a
ladder diagram can be determined by I/O bits, flags, work bits, timers/count-
ers, etc. LOAD and OUTPUT instructions can also use TR area bits, but they
do so only in special applications. Refer to 4-6-7 Branching Instruction Lines
for details.

The way that conditions correspond to what instructions is determined by the
relationship between the conditions within the instruction lines that connect
them. Any group of conditions that go together to create a logic result is
called a logic block. Although ladder diagrams can be written without actually
analyzing individual logic blocks, understanding logic blocks is necessary for
efficient programming and is essential when programs are to be input in mne-
monic code.

4-3-2 Mnemonic Code
The ladder diagram cannot be directly input into the PC via a Programming
Console; a GPC, a FIT, or LSS is required. To input from a Programming
Console, it is necessary to convert the ladder diagram to mnemonic code.
The mnemonic code provides exactly the same information as the ladder dia-
gram, but in a form that can be typed directly into the PC. Actually you can
program directly in mnemonic code, although it in not recommended for be-
ginners or for complex programs. Also, regardless of the Programming De-
vice used, the program is input in mnemonic form, making it important to un-
derstand mnemonic code.

Because of the importance of the Programming Console as a peripheral de-
vice and because of the importance of mnemonic code in complete under-
standing of a program, we will introduce and describe the mnemonic code
along with the ladder diagram. Remember, you will not need to use the mne-
monic code if you are inputting via a GPC, a FIT, or LSS (although you can
use it with these devices too, if you prefer).

Normally Open and
Normally Closed
Conditions

Execution Conditions

Operand Bits

Logic Blocks

#���� $�%%�� �������� Section 4-3

#"

The program is input into addresses in Program Memory. Addresses in Pro-
gram Memory are slightly different to those in other memory areas because
each address does not necessarily hold the same amount of data. Rather,
each address holds one instruction and all of the definers and operands (de-
scribed in more detail later) required for that instruction. Because some in-
structions require no operands, while others require up to three operands,
Program Memory addresses can be from one to four words long.

Program Memory addresses start at 00000 and run until the capacity of Pro-
gram Memory has been exhausted. The first word at each address defines
the instruction. Any definers used by the instruction are also contained in the
first word. Also, if an instruction requires only a single bit operand (with no
definer), the bit operand is also programmed on the same line as the instruc-
tion. The rest of the words required by an instruction contain the operands
that specify what data is to be used. When converting to mnemonic code, all
but ladder diagram instructions are written in the same form, one word to a
line, just as they appear in the ladder diagram symbols. An example of mne-
monic code is shown below. The instructions used in it are described later in
the manual.

Address Instruction Operands

00000 LD HR 0001
00001 AND 00001

00002 OR 00002
00003 LD NOT 00100

00004 AND 00101
00005 AND LD 00102

00006 MOV(21)
000

DM 0000

00007 CMP(20)

DM 0000
HR 00

00008 LD 25505

00009 OUT 00501

00010 MOV(21)
DM 0000
DM 0500

00011 DIFU(13) 00502
00012 AND 00005

00013 OUT 00503

The address and instruction columns of the mnemonic code table are filled in
for the instruction word only. For additional data lines, the left two columns
are left blank. If the instruction requires no definer or bit operand, the oper-
and column is left blank for first line. It is a good idea to cross through any
blank data column spaces (for all instruction words that do not require data)
so that the data column can be quickly scanned to see if any addresses have
been left out.

When programming, addresses are automatically displayed and do not have
to be input unless for some reason a different location is desired for the in-
struction. When converting to mnemonic code, it is best to start at Program
Memory address 00000 unless there is a specific reason for starting else-
where.

Program Memory Structure

#���� $�%%�� �������� Section 4-3

'4

4-3-3 Ladder Instructions
The ladder instructions are those instructions that correspond to the condi-
tions on the ladder diagram. Ladder instructions, either independently or in
combination with the logic block instructions described next, form the execu-
tion conditions upon which the execution of all other instructions are based.

3.The first condition that starts any logic block within a ladder diagram corre-
sponds to a LOAD or LOAD NOT instruction. Each of these instruction re-
quires one line of mnemonic code. “Instruction” is used as a dummy instruc-
tion in the following examples and could be any instruction described later in
this manual.

00000

00000

A LOAD instruction.

A LOAD NOT instruction.

Address Instruction Operands

00000 LD 00000
00001 Instruction

00002 LD NOT 00000
00003 Instruction

When this is the only condition on the instruction line, the execution condition
for the instruction at the right is ON when the condition is ON. For the LOAD
instruction (i.e., a normally open condition), the execution condition would be
ON when IR 00000 was ON; for the LOAD NOT instruction (i.e., a normally
closed condition), it would be ON when IR 00000 was OFF.

4.When two or more conditions lie in series on the same instruction line, the
first one corresponds to a LOAD or LOAD NOT instruction; and the rest of
the conditions, to AND or AND NOT instructions. The following example
shows three conditions which correspond in order from the left to a LOAD, an
AND NOT, and an AND instruction. Again, each of these instructions requires
one line of mnemonic code.

00000 00100 LR 0000
Instruction

Address Instruction Operands

00000 LD 00000

00001 AND NOT 00100
00002 AND LR 0000
00003 Instruction

The instruction would have an ON execution condition only when all three
conditions are ON, i.e., when IR 00000 was ON, IR 00100 was OFF, and LR
0000 was ON.

AND instructions in series can be considered individually, with each taking
the logical AND of the execution condition (i.e., the total of all conditions up to
that point) and the status of the AND instruction’s operand bit. If both of these
are ON, an ON execution condition will be produced for the next instruction.
If either is OFF, the result will also be OFF. The execution condition for the
first AND instruction in a series is the first condition on the instruction line.

Each AND NOT instruction in a series would take the logical AND between
its execution condition and the inverse of its operand bit.

LOAD and LOAD NOT

AND and AND NOT

#���� $�%%�� �������� Section 4-3

'�

5.When two or more conditions lie on separate instruction lines running in
parallel and then joining together, the first condition corresponds to a LOAD
or LOAD NOT instruction; the rest of the conditions correspond to OR or OR
NOT instructions. The following example shows three conditions which corre-
spond in order from the top to a LOAD NOT, an OR NOT, and an OR instruc-
tion. Again, each of these instructions requires one line of mnemonic code.

Instruction

00100

LR 0000

00000

Address Instruction Operands

00000 LD 00000

00001 OR NOT 00100
00002 OR LR 0000

00003 Instruction

The instruction would have an ON execution condition when any one of the
three conditions was ON, i.e., when IR 00000 was OFF, when IR 00100 was
OFF, or when LR 0000 was ON.

OR and OR NOT instructions can be considered individually, each taking the
logical OR between its execution condition and the status of the OR instruc-
tion’s operand bit. If either one of these were ON, an ON execution condition
would be produced for the next instruction.

When AND and OR instructions are combined in more complicated dia-
grams, they can sometimes be considered individually, with each instruction
performing a logic operation on the execution condition and the status of the
operand bit. The following is one example. Study this example until you are
convinced that the mnemonic code follows the same logic flow as the ladder
diagram.

Instruction
00002 0000300000 00001

00200

Address Instruction Operands

00000 LD 00000
00001 AND 00001

00002 OR 00200
00003 AND 00002

00004 AND NOT 00003
00005 Instruction

Here, an AND is taken between the status of IR 00000 and that of IR 00001
to determine the execution condition for an OR with the status of IR 00200.
The result of this operation determines the execution condition for an AND
with the status of IR 00002, which in turn determines the execution condition
for an AND with the inverse (i.e., and AND NOT) of the status of IR 00003.

OR and OR NOT

Combining AND and OR
Instructions

#���� $�%%�� �������� Section 4-3

'�

In more complicated diagrams, however, it is necessary to consider logic
blocks before an execution condition can be determined for the final instruc-
tion, and that’s where AND LOAD and OR LOAD instructions are used. Be-
fore we consider more complicated diagrams, however, we’ll look at the in-
structions required to complete a simple “input-output” program.

4-3-4 OUTPUT and OUTPUT NOT

The simplest way to output the results of combining execution conditions is to
output it directly with the OUTPUT and OUTPUT NOT. These instructions are
used to control the status of the designated operand bit according to the ex-
ecution condition. With the OUTPUT instruction, the operand bit will be
turned ON as long as the execution condition is ON and will be turned OFF
as long as the execution condition is OFF. With the OUTPUT NOT instruc-
tion, the operand bit will be turned ON as long as the execution condition is
OFF and turned OFF as long as the execution condition is ON. These appear
as shown below. In mnemonic code, each of these instructions requires one
line.

00000

00201

00200

00001

Address Instruction Operands

00000 LD 00000
00001 OUT 00200

Address Instruction Operands

00000 LD 00001

00001 OUT NOT 00201

In the above examples, IR 00200 will be ON as long as IR 00000 is ON and
IR 00201 will be OFF as long as IR 00001 is ON. Here, IR 00000 and IR
00001 would be input bits and IR 00200 and IR 00201 output bits assigned to
the Units controlled by the PC, i.e., the signals coming in through the input
points assigned IR 00000 and IR 00001 are controlling the output points as-
signed IR 00200 and IR 00201, respectively.

The length of time that a bit is ON or OFF can be controlled by combining the
OUTPUT or OUTPUT NOT instruction with Timer instructions. Refer to Ex-
amples under 5-10-1 TIMER -- TIM for details.

4-3-5 The END Instruction

The last instruction required to complete a simple program is the END in-
struction. When the CPU cycles the program, it executes all instructions up to
the first END instruction before returning to the beginning of the program and
beginning execution again. Although an END instruction can be placed at any
point in a program, which is sometimes done when debugging, no instruc-
tions past the first END instruction will be executed until it is removed. The
number following the END instruction in the mnemonic code is its function
code, which is used when inputted most instruction into the PC. These are

#���� $�%%�� �������� Section 4-3

'�

described later. The END instruction requires no operands and no conditions
can be placed on the same instruction line with it.

Instruction
00000 00001

END(01)
Program execution
ends here.

Address Instruction Operands

00000 LD 00000

00001 AND NOT 00001
00002 Instruction
00003 END(01) ---

If there is no END instruction anywhere in the program, the program will not
be executed at all.
Now you have all of the instructions required to write simple input-output pro-
grams. Before we finish with ladder diagram basics and go onto inputting the
program into the PC, let’s look at logic block instruction (AND LOAD and OR
LOAD), which are sometimes necessary even with simple programs.

4-3-6 Logic Block Instructions
Logic block instructions do not correspond to specific conditions on the lad-
der diagram; rather, they describe relationships between logic blocks. The
AND LOAD instruction logically ANDs the execution conditions produced by
two logic blocks. The OR LOAD instruction logically ORs the execution condi-
tions produced by two logic blocks.

6.Although simple in appearance, the diagram below requires an AND LOAD
instruction.

Instruction
00002

00003

00000

00001

Address Instruction Operands

00000 LD 00000
00001 OR 00001

00002 LD 00002
00003 OR NOT 00003

00004 AND LD ---

The two logic blocks are indicated by dotted lines. Studying this example
shows that an ON execution condition will be produced when: either of the
conditions in the left logic block is ON (i.e., when either IR 00000 or IR 00001
is ON), and when either of the conditions in the right logic block is ON (i.e.,
when either IR 00002 is ON or IR 00003 is OFF).

The above ladder diagram cannot, however, be converted to mnemonic code
using AND and OR instructions alone. If an AND between IR 00002 and the
results of an OR between IR 00000 and IR 00001 is attempted, the OR NOT
between IR 00002 and IR 00003 is lost and the OR NOT ends up being an
OR NOT between just IR 00003 and the result of an AND between IR 00002
and the first OR. What we need is a way to do the OR (NOT)’s independently
and then combine the results.

AND LOAD

#���� $�%%�� �������� Section 4-3

'#

To do this, we can use the LOAD or LOAD NOT instruction in the middle of
an instruction line. When LOAD or LOAD NOT is executed in this way, the
current execution condition is saved in special buffers and the logic process
is begun over. To combine the results of the current execution condition with
that of a previous “unused” execution condition, an AND LOAD or an OR
LOAD instruction is used. Here “LOAD” refers to loading the last unused ex-
ecution condition. An unused execution condition is produced by using the
LOAD or LOAD NOT instruction for any but the first condition on an instruc-
tion line.

Analyzing the above ladder diagram in terms of mnemonic instructions, the
condition for IR 00000 is a LOAD instruction and the condition below it is an
OR instruction between the status of IR 00000 and that of IR 00001. The
condition at IR 00002 is another LOAD instruction and the condition below is
an OR NOT instruction, i.e., an OR between the status of IR 00002 and the
inverse of the status of IR 00003. To arrive at the execution condition for the
instruction at the right, the logical AND of the execution conditions resulting
from these two blocks would have to be taken. AND LOAD does this. The
mnemonic code for the ladder diagram is shown below. The AND LOAD in-
struction requires no operands of its own, because it operates on previously
determined execution conditions. Here too, dashes are used to indicate that
no operands needs designated or input.

7.The following diagram requires an OR LOAD instruction between the top
logic block and the bottom logic block. An ON execution condition would be
produced for the instruction at the right either when IR 00000 is ON and IR
00001 is OFF, or when IR 00002 and IR 00003 are both ON. The operation
of the OR LOAD instruction and its mnemonic code is exactly the same as
that for an AND LOAD instruction, except that the current execution condition
is ORed with the last unused execution condition.

Instruction
00000 00001

00002 00003

Address Instruction Operands

00000 LD 00000
00001 AND NOT 00001

00002 LD 00002
00003 AND 00003

00004 OR LD ---

Naturally, some diagrams will require both AND LOAD and OR LOAD instruc-
tions.

To code diagrams with logic block instructions in series, the diagram must be
divided into logic blocks. Each block is coded using a LOAD instruction to
code the first condition, and then AND LOAD or OR LOAD is used to logically
combine the blocks. With both AND LOAD and OR LOAD there are two ways
to achieve this. One is to code the logic block instruction after the first two
blocks and then after each additional block. The other is to code all of the
blocks to be combined, starting each block with LOAD or LOAD NOT, and
then to code the logic block instructions which combine them. In this case,
the instructions for the last pair of blocks should be combined first, and then
each preceding block should be combined, working progressively back to the
first block. Although either of these methods will produce exactly the same

OR LOAD

Logic Block Instructions in
Series

#���� $�%%�� �������� Section 4-3

''

result, the second method, that of coding all logic block instructions together,
can be used only if eight or fewer blocks are being combined, i.e., if seven or
fewer logic block instructions are required.
The following diagram requires AND LOAD to be converted to mnemonic
code because three pairs of parallel conditions lie in series. The two means
of coding the programs are also shown.

00000 00002 00004

00001 00003 00005

00500

Address Instruction Operands Address Instruction Operands

00000 LD 00000
00001 OR NOT 00001

00002 LD NOT 00002
00003 OR 00003

00004 AND LD —
00005 LD 00004

00006 OR 00005
00007 AND LD —

00008 OUT 00500

00000 LD 00000
00001 OR NOT 00001

00002 LD NOT 00002
00003 OR 00003

00004 LD 00004
00005 OR 00005

00006 AND LD —
00007 AND LD —

00008 OUT 00500

Again, with the method on the right, a maximum of eight blocks can be com-
bined. There is no limit to the number of blocks that can be combined with
the first method.

The following diagram requires OR LOAD instructions to be converted to
mnemonic code because three pairs of conditions in series lie in parallel to
each other.

00000 00001

00002 00003

00040 00005

00501

The first of each pair of conditions is converted to LOAD with the assigned bit
operand and then ANDed with the other condition. The first two blocks can
be coded first, followed by OR LOAD, the last block, and another OR LOAD,
or the three blocks can be coded first followed by two OR LOADs. The mne-
monic code for both methods is shown below.

00000 LD 00000
00001 AND NOT 00001

00002 LD NOT 00002
00003 AND NOT 00003

00004 OR LD —
00005 LD 00004

00006 AND 00005
00007 OR LD —
00008 OUT 00501

00000 LD 00000
00001 AND NOT 00001

00002 LD NOT 00002
00003 AND NOT 00003

00004 LD 00004
00005 AND 00005

00006 OR LD —
00007 OR LD —
00008 OUT 00501

Address Instruction Operands Address Instruction Operands

#���� $�%%�� �������� Section 4-3

'(

Again, with the method on the right, a maximum of eight blocks can be com-
bined. There is no limit to the number of blocks that can be combined with
the first method.

Both of the coding methods described above can also be used when using
AND LOAD and OR LOAD, as long as the number of blocks being combined
does not exceed eight.

The following diagram contains only two logic blocks as shown. It is not nec-
essary to further separate block b components, because it can coded directly
using only AND and OR.

00000 00001 00002 00003

00201

00501

00004

Block
a

Block
b

Address Instruction Operands

00000 LD 00000

00001 AND NOT 00001
00002 LD 00002
00003 AND 00003

00004 OR 00201
00005 OR 00004

00006 AND LD —
00007 OUT 00501

Although the following diagram is similar to the one above, block b in the dia-
gram below cannot be coded without separating it into two blocks combined
with OR LOAD. In this example, the three blocks have been coded first and
then OR LOAD has been used to combine the last two blocks followed by
AND LOAD to combine the execution condition produced by the OR LOAD
with the execution condition of block a.

When coding the logic block instructions together at the end of the logic
blocks they are combining, they must, as shown below, be coded in reverse
order, i.e., the logic block instruction for the last two blocks is coded first, fol-
lowed by the one to combine the execution condition resulting from the first
logic block instruction and the execution condition of the logic block third from
the end, and on back to the first logic block that is being combined.

00000 00001 00002 00003
00502

00004 00202

Block
a

Block
b

Block
b2

Block
b1

Combining AND LOAD and
OR LOAD

#���� $�%%�� �������� Section 4-3

'�

Address Instruction Operands

00000 LD NOT 00000
00001 AND 00001

00002 LD 00002
00003 AND NOT 00003

00004 LD NOT 00004
00005 AND 00202

00006 OR LD —
00007 AND LD —
00008 OUT 00502

When determining what logic block instructions will be required to code a dia-
gram, it is sometimes necessary to break the diagram into large blocks and
then continue breaking the large blocks down until logic blocks that can be
coded without logic block instructions have been formed. These blocks are
then coded, combining the small blocks first, and then combining the larger
blocks. Either AND LOAD or OR LOAD is used to combine the blocks, i.e.,
AND LOAD or OR LOAD always combines the last two execution conditions
that existed, regardless of whether the execution conditions resulted from a
single condition, from logic blocks, or from previous logic block instructions.

When working with complicated diagrams, blocks will ultimately be coded
starting at the top left and moving down before moving across. This will gen-
erally mean that, when there might be a choice, OR LOAD will be coded be-
fore AND LOAD.

The following diagram must be broken down into two blocks and each of
these then broken into two blocks before it can be coded. As shown below,
blocks a and b require an AND LOAD. Before AND LOAD can be used, how-
ever, OR LOAD must be used to combine the top and bottom blocks on both
sides, i.e., to combine a1 and a2; b1 and b2.

00000 00001 00004 00005
00503

Block
a

Block
b

00006 00007

Block
b2

Block
b1

00002 00003

Block
a2

Block
a1

Blocks a1 and a2

Blocks b1 and b2

Blocks a and b

Address Instruction Operands

00000 LD 00000
00001 AND NOT 00001
00002 LD NOT 00002

00003 AND 00003

00004 OR LD —
00005 LD 00004
00006 AND 00005

00007 LD 00006
00008 AND 00007

00009 OR LD —
00010 AND LD —

00011 OUT 00503

Complicated Diagrams

#���� $�%%�� �������� Section 4-3

',

The following type of diagram can be coded easily if each block is coded in
order: first top to bottom and then left to right. In the following diagram,
blocks a and b would be combined using AND LOAD as shown above, and
then block c would be coded and a second AND LOAD would be used to
combined it with the execution condition from the first AND LOAD. Then
block d would be coded, a third AND LOAD would be used to combine the
execution condition from block d with the execution condition from the sec-
ond AND LOAD, and so on through to block n.

Block
a

Block
b

00500

Block
n

Block
c

The following diagram requires an OR LOAD followed by an AND LOAD to
code the top of the three blocks, and then two more OR LOADs to complete
the mnemonic code.

00002 00003

LR 0000

00000 00001

00004 00005

00006 00007

Address Instruction Operands

00000 LD 00000

00001 LD 00001
00002 LD 00002
00003 AND NOT 00003

00004 OR LD ----

00005 AND LD ----
00006 LD NOT 00004
00007 AND 00005

00008 OR LD ----

00009 LD NOT 00006
00010 AND 00007
00011 OR LD ----

00012 OUT LR 0000

Although the program will execute as written, this diagram could be drawn as
shown below to eliminate the need for the first OR LOAD and the AND
LOAD, simplifying the program and saving memory space.

00002 00003
LR 0000

00001

00000

00004 00005

00006 00007

Address Instruction Operands

00000 LD 00002

00001 AND NOT 00003
00002 OR 00001

00003 AND 00000
00004 LD NOT 00004

00005 AND 00005
00006 OR LD ----

00007 LD NOT 00006
00008 AND 00007

00009 OR LD ----
00010 OUT LR 0000

#���� $�%%�� �������� Section 4-3

'"

The following diagram requires five blocks, which here are coded in order
before using OR LOAD and AND LOAD to combine them starting from the
last two blocks and working backward. The OR LOAD at program address
00008 combines blocks blocks d and e, the following AND LOAD combines
the resulting execution condition with that of block c, etc.

LR 0000

00000

00003 00004

00006 00007

00001 00002

00005

Block e

Block dBlock c

Block b

Block a

Address Instruction Operands

Blocks d and e

Block c with result of above

Block b with result of above

Block a with result of above

00000 LD 00000

00001 LD 00001
00002 AND 00002
00003 LD 00003

00004 AND 00004

00005 LD 00005
00006 LD 00006
00007 AND 00007

00008 OR LD ----

00009 AND LD ----
00010 OR LD ----
00011 AND LD ----

00012 OUT LR 0000

Again, this diagram can be redrawn as follows to simplify program structure
and coding and to save memory space.

00006 00007
LR 0000

00005

00001 00002

00003 00004 00000

Address Instruction Operands

00000 LD 00006

00001 AND 00007
00002 OR 00005

00003 AND 00003
00004 AND 00004

00005 LD 00001
00006 AND 00002

00007 OR LD ----
00008 AND 00000

00009 OUT LR 0000

#���� $�%%�� �������� Section 4-3

(4

The next and final example may at first appear very complicated but can be
coded using only two logic block instructions. The diagram appears as fol-
lows:

00000 00001

00500

00002 00003

01000 01001

00004 00005

00500

00006

Block cBlock b

Block a

The first logic block instruction is used to combine the execution conditions
resulting from blocks a and b, and the second one is to combine the execu-
tion condition of block c with the execution condition resulting from the nor-
mally closed condition assigned IR 00003. The rest of the diagram can be
coded with OR, AND, and AND NOT instructions. The logical flow for this and
the resulting code are shown below.

00000 00001

00500

00002 00003

01000 01001

00004 0000500500

00006

Block c

Block bBlock a

OR LD

LD 00000
AND 00001

OR 00500

AND 00002
AND NOT 00003

LD 01000
AND 01001

OR 00006

LD 00004
AND 00005

AND LD

Address Instruction Operands

00000 LD 00000
00001 AND 00001

00002 LD 01000
00003 AND 01001

00004 OR LD ----
00005 OR 00500

00006 AND 00002
00007 AND NOT 00003

00008 LD 00004
00009 AND 00005

00010 OR 00006
00011 AND LD ----
00012 OUT 00500

#���� $�%%�� �������� Section 4-3

(�

4-3-7 Coding Multiple Instructions
If there is more than one instruction executed with the same execution condi-
tion, they are coded consecutively following the last condition on the instruc-
tion line. In the following example, the last instruction line contains one more
condition that corresponds to an AND with IR 00004.

00000 00003

00001

0000400002

HR 0000

HR
0001

00500

00506

Address Instruction Operands

00000 LD 00000
00001 OR 00001

00002 OR 00002
00003 OR HR 0000

00004 AND 00003
00005 OUT HR 0001

00006 OUT 00500
00007 AND 00004
00008 OUT 00506

4-4 The Programming Console
Once a program has been written, it must be input into the PC. This can be
done in graphic (ladder diagram) form using a GPC,a FIT, or LSS. The most
common way of inputting a program, however, is through a Programming
Console using mnemonic code. This section and 4-4-1 TERMINAL and CON-
SOLE Modes describe the Programming Console and the operation neces-
sary to prepare for program input. Refer to 4-6 Inputting, Modifying, and
Checking the Program for details on actual procedures for inputting the pro-
gram into memory.
Depending on the model of Programming Console used, it is either con-
nected to the CPU via a Programming Console Adapter and Connecting Ca-
ble or it is mounted directly to the CPU.

4-4-1 TERMINAL and CONSOLE Modes
When mounted to the C20H/C28H/C40H/C60H, the Programming Console
can be set to operate as a display terminal in what is called TERMINAL
mode. While the Programming Console is in TERMINAL mode, key inputs
from the Programming Console can be used to turn ON/OFF certain memory
bits. TERMINAL mode is a Programming Console mode; do not confuse it
with PC modes (MONITOR, PROGRAM, and RUN mode). The normal Pro-
gramming Console mode is CONSOLE mode.
When the Programming Console is in TERMINAL mode, all normal Program-
ming Console operations and the mode switch on the Programming Console
are disabled. You must return to CONSOLE mode to enable normal Pro-
gramming Console functions.

Entering TERMINAL Mode There are three ways to enter TERMINAL mode. One is directly through key
operations on the Programming Console; the other is by executing KEY(62).
TERMINAL mode is entered from the Programming Console by pressing
CHG while the password display or a mode display is on the Programming
Console. If the Programming Console is not in one of these conditions, press
CLR to reset the display before pressing CHG. When TERMINAL mode is
entered, a message display will appear (see next section).
To return to CONSOLE mode, press CHG again. A mode display will appear
to indicate the PC mode (either MONITOR, PROGRAM, or RUN mode).
TERMINAL mode can be enter from MONITOR, PROGRAM, or RUN mode.
These modes will not change when TERMINAL mode is entered and will also
be maintained when TERMINAL mode is left.

��� ��	�������� �	��	
� Section 4-4

(�

KEY(62) is used to execute the Programming Console key operations from
the program. It can therefore be used to execute the key sequence required
to enter and leave TERMINAL mode. The normal procedure is to execute
KEY(62) with operand words that contain 4021. The first part, 40 is CLR and
resets the Programming Console display and the second part, 21, is the
CHG key code. The same code can then be used to return the Programming
Console to CONSOLE mode.

KEY(62) will not be executed and TERMINAL mode will not be entered un-
less a Programming Console is mounted. Refer to Section 5 Instruction Set
for details on KEY(62).

The last way to enter TERMINAL mode is to start up in TERMINAL mode by
either designating it as the startup mode or by designating to restart in the
same mode as when the PC was turned off and turning off the PC in TERMI-
NAL mode. These designations are made in DM 0900. Refer to 4-4-3 PC
Modes for details.

TERMINAL Mode Displays When the Programming Console is in TERMINAL mode, displays pro-
grammed with MSG(46) or LMSG(47)will be displayed. With these instruc-
tions, the programmer can input into memory either 16- or 32-character mes-
sages that are output when the instruction is executed.

If one of these instructions has been executed, the message will appear on
the Programming Console as soon as TERMINAL mode is entered. If more
than one of these instruction is executed, the last one will always be
displayed. If none of these instructions has been executed, a display
indicated that no message has yet been generated will appear.

The last message is preserved even after the PC mode is changed.

TERMINAL Mode Key Inputs While in TERMINAL mode, the bits of AR 22 can be turned ON by pressing
the numeric keys on the Programming Console. The keys and corresponding
bits in AR 22 are as follows:

Key Bit

0 AR 2200

1 AR 2201

2 AR 2202

3 AR 2203

4 AR 2204

5 AR 2205

6 AR 2206

7 AR 2207

8 AR 2208

9 AR 2209

A AR 2210

B AR 2211

C AR 2212

D AR 2213

E AR 2214

F AR 2215

This operation is controlled by AR 0708 (TERMINAL Mode Input Cancel Bit).
As long as AR 0708 is OFF, Programming Console keys will turn ON the cor-
responding bits when pressed. When AR 0708 is turned ON, all AR 22 bits
will be turned OFF and key inputs will be disabled until AR 0708 is turned
OFF again.

AR 22 status is maintained when the Programming Console enters and
leaves TERMINAL mode and when PC power is turned off and on.

��� ��	�������� �	��	
� Section 4-4

(�

4-4-2 The Keyboard
The keyboard of the Programming Console is functionally divided by key
color into the following four areas:

The ten white keys are used to input numeric program data such as program
addresses, data area addresses, and operand values. The numeric keys are
also used in combination with the function key (FUN) to enter instructions
with function codes.

The CLR key clears the display and cancels current Programming Console
operations. It is also used when you key in the password at the beginning of
programming operations. Any Programming Console operation can be can-
celled by pressing the CLR key, although the CLR key may have to be
pressed two or three times to cancel the operation and clear the display.

The yellow keys are used for writing and correcting programs. Detailed ex-
planations of their functions are given later in this section.

Except for the SHIFT key on the upper right, the gray keys are used to input
instructions and designate data area prefixes when inputting or changing a
program. The SHIFT key is similar to the shift key of a typewriter, and is used
to alter the function of the next key pressed. (It is not necessary to hold the
SHIFT key down; just press it once and then press the key to be used with
it.)

White: Numeric Keys

Red: CLR Key

Yellow: Operation Keys

Gray: Instruction and Data
Area Keys

��� ��	�������� �	��	
� Section 4-4

(#

The gray keys other than the SHIFT key have either the mnemonic name of
the instruction or the abbreviation of the data area written on them. The func-
tions of these keys are described below.

Pressed before the function code when inputting an instruction
via its function code.

Pressed to enter SFT (the Shift Register instruction).

Input either after a function code to designate the differentiated
form of an instruction or after a ladder instruction to designate
an inverse condition.

Pressed to enter AND (the AND instruction) or used with NOT
to enter AND NOT.

Pressed to enter OR (the OR instruction) or used with NOT to
enter OR NOT.

Pressed to enter CNT (the Counter instruction) or to designate
a TC number that has already been defined as a counter.

Pressed to enter LD (the Load instruction) or used with NOT to
enter LD NOT. Also pressed to indicate an input bit.

Pressed to enter OUT (the Output instruction) or used with
NOT to enter OUT NOT. Also pressed to indicate an output bit.

Pressed to enter TIM (the Timer instruction) or to designate a
TC number that has already been defined as a timer.

Pressed before designating an address in the TR area.

Pressed before designating an address in the LR area.

Pressed before designating an address in the HR area.

Pressed before designating an address in the AR area.

Pressed before designating an address in the DM area.

Pressed before designating an indirect DM address.

Pressed before designating a word address.

Pressed before designating an operand as a constant.

Pressed before designating a bit address.

��� ��	�������� �	��	
� Section 4-4

('

4-4-3 PC Modes
The Programming Console is equipped with a switch to control the PC mode.
To select one of the three operating modes—RUN, MONITOR, or PRO-
GRAM—use the mode switch. The mode that you select will determine PC
operation as well as the procedures that are possible from the Programming
Console.

RUN mode is the mode used for normal program execution. When the switch
is set to RUN and the START input on the CPU Power Supply Unit is ON, the
CPU will begin executing the program according to the program written in its
Program Memory. Although monitoring PC operation from the Programming
Console is possible in RUN mode, no data in any of the memory areas can
be input or changed.

MONITOR mode allows you to visually monitor in-progress program execu-
tion while controlling I/O status, changing PV (present values) or SV (set val-
ues), etc. In MONITOR mode, I/O processing is handled in the same way as
in RUN mode. MONITOR mode is generally used for trial system operation
and final program adjustments.

In PROGRAM mode, the PC does not execute the program. PROGRAM
mode is for creating and changing programs, clearing memory areas, and
registering and changing the I/O table. A special Debug operation is also
available within PROGRAM mode that enables checking a program for cor-
rect execution before trial operation of the system.

TERMINAL mode and CONSOLE mode are Programming Console modes
and are independent of RUN, MONITOR, and PROGRAM modes, i.e., the
System can simultaneously be in both TERMINAL and RUN mode. TERMI-
NAL and CONSOLE modes are described in Section 4-4-1 TERMINAL and
CONSOLE Modes.

DANGER! Do not leave the Programming Console connected to the PC by an extension
cable when in RUN mode. Noise entering via the extension cable can enter
the PC, affecting the program and thus the controlled system.

When the PC is turned on, the initial operating mode is affected by any Pe-
ripheral Device connected or mounted to the CPU as well as by designations
made in DM 0900 as shown in the following table:

Setting in DM 0900, bits 08 to 15 CPU connector Initial operating mode

Set to start in mode set on Nothing connected RUN/CONSOLE mode

Programming Console mode switch Programming Console mounted Mode set on mode switch and
CONSOLE mode

Peripheral Interface Unit mounted PROGRAM/CONSOLE mode

Set to continue mode PC was in Nothing connected Mode the PC was in when turned off.

when last turned off Programming Console mounted

Peripheral Interface Unit mounted

Set to start in mode set in Nothing connected Mode set in bits 00 to 07 of DM 0900

bits 00 to 07 of DM 0900 Programming Console mounted

Peripheral Interface Unit mounted

If the PC power supply is already turned on when a Peripheral Device is at-
tached to the PC, the PC will stay in the same mode it was in before the Pe-
ripheral Device was attached. The mode can be changed with the mode
switch on the Programming Console once the password has been entered.

The mode will not change when a peripheral device is removed from the PC
after PC power is turned on.

Mode Changes

��� ��	�������� �	��	
� Section 4-4

((

DANGER! Always confirm that the Programming Console is in PROGRAM mode when
turning on the PC with a Programming Console connected unless another
mode is desired for a specific purpose. If the Programming Console is in
RUN mode when PC power is turned on, any program in Program Memory
will be executed, possibly causing a PC-controlled system to begin operation.

4-5 Preparation for Operation
This section describes the procedures required to begin Programming Con-
sole operation. These include password entry, clearing memory, error mes-
sage clearing, and I/O table operations. I/O table operations are also neces-
sary at other times, e.g., when changes are to be made in Units used in the
PC configuration.

The following sequence of operations must be performed before beginning
initial program input.

1, 2, 3... 1. Confirm that all wiring for the PC has been installed and checked prop-
erly.

2. Confirm that a RAM Unit is mounted as the Memory Unit and that the
write-protect switch is OFF.

3. Connect the Programming Console to the PC. Make sure that the Pro-
gramming Console is securely connected or mounted to the CPU; im-
proper connection may inhibit operation.

4. Set the mode switch to PROGRAM mode.

5. Turn on PC power.

6. Enter the password.

7. Clear memory.

Each of these operations from entering the password on is described in detail
in the following subsections. All operations should be done in PROGRAM
mode unless otherwise noted.

4-5-1 Entering the Password
To gain access to the PC’s programming functions, you must first enter the
password. The password prevents unauthorized access to the program.

The PC prompts you for a password when PC power is turned on or, if PC
power is already on, after the Programming Console has been connected to
the PC. To gain access to the system when the “Password!” message ap-
pears, press CLR and then MONTR. Then press CLR to clear the display.

���������	� �	�
������	� Section 4-5

(�

If the Programming Console is connected to the PC when PC power is al-
ready on, the first display below will indicate the mode the PC was in before
the Programming Console was connected. Ensure that the PC is in PRO-
GRAM mode before you enter the password. When the password is en-
tered, the PC will shift to the mode set on the mode switch, causing PC op-
eration to begin if the mode is set to RUN or MONITOR. The mode can be
changed to RUN or MONITOR with the mode switch after entering the pass-
word.

Indicates the mode set by the mode selector switch.

C���=�'�D

�',,6��%

C���=�'�D 4E

8.Immediately after the password is input or anytime immediately after the
mode has been changed, SHIFT and then the 1 key can be pressed to turn
on and off the beeper that sounds when Programming Console keys are
pressed. If BZ is displayed in the upper right corner, the beeper is operative.
If BZ is not displayed, the beeper is not operative.

This beeper also will also sound whenever an error occurs during PC opera-
tion. Beeper operation for errors is not affected by the above setting.

4-5-2 Clearing Memory

Using the Memory Clear operation it is possible to clear all or part of the Pro-
gram Memory, and the IR, HR, AR, DM and TC areas. Unless otherwise
specified, the clear operation will clear all of the above memory areas, pro-
vided that the Memory Unit attached to the PC is a RAM Unit or an EEPROM
Unit and the write-enable switch is ON. If the write-enable switch is OFF or
the Memory Unit is an EPROM Unit, Program Memory cannot be cleared.
(The system DM areas, DM 0900 to DM 0999 and DM 1900 to DM 1999, will
not be cleared in any circumstances.)

Before beginning to programming for the first time or when installing a new
program, all areas should normally be cleared. Before clearing memory,
check to see whether there is already a program loaded. If there is one, de-
termine whether it is one that you need. If you do need the program, clear
only the memory areas that you do not need. Check the existing program
with the program check key sequence before using it. The check sequence is
provided later in this section. Further debugging methods are provided in
Section 7 Program Debugging and Execution. To clear all memory areas
press CLR until all zeros are displayed, and then input the keystrokes given
in the top line of the following key sequence. The branch lines shown in the
sequence are used only when performing a partial memory clear, which is
described below.

Memory can be cleared in PROGRAM mode only.

Beeper

���������	� �	�
������	� Section 4-5

(,

Key Sequence

Both AR and HR areas

TC area

DM area

Program Memory cleared

from designated address.

Retained if pressed

The following procedure is used to clear memory completely. Before execut-
ing these steps, the write enable switch on the CPU must be switched ON. If
the switch is not ON, the Program Memory and DM 1000 to DM 1899 cannot
be cleared. (The HR, AR, and TC areas, as well as DM 0000 to 0899, will be
cleared even if the write enable switch is OFF.) After turning on the switch,
follow the key sequence described below.

Continue pressing
the CLR key once for
each error message
until “00000” appears
on the display.

All clear

�7���F 7��

,F, 8')� 8'� 07

+++++

+++++ �7� ��� G

1� ��� %�

+++++�7� ���

7�% 1� ��� %�

+++++

It is possible to retain the data in specified areas or part of the Program
Memory. To retain the data in the HR and AR, TC, and/or DM areas, press
the appropriate key after entering REC/RESET. HR is pressed to designate
both the HR and AR areas. In other words, specifying that HR is to be re-
tained will ensure that AR is retained also. If not specified for retention, both
areas will be cleared. CNT is used for the entire TC area. The display will
show those areas that will be cleared.

It is also possible to retain a portion of the Program Memory from the begin-
ning to a specified address. After designating the data areas to be retained,
specify the first Program Memory address to be cleared. For example, to
leave addresses 00000 to 00122 untouched, but to clear addresses from
00123 to the end of Program Memory, input 00123.

All Clear

Partial Clear

���������	� �	�
������	� Section 4-5

("

To leave the TC area uncleared and retaining Program Memory addresses
00000 through 00122, input as follows:

+++++

+++++

+++++

+++++�7� ��� G

1� ��� %�

+++++�7� ��� G

1� %�

++�	��7� ��� G

1� %�

+++++�7� ���

7�% 1� %�

4-5-3 Clearing Error Messages
Any error messages recorded in memory should be cleared. It is assumed
here that the causes of any of the errors for which error messages appear
have already been taken care of. If the beeper sounds when an attempt is
made to clear an error message, eliminate the cause of the error, and then
clear the error message (refer to Section 9 Troubleshooting).

To display any recorded error messages, press CLR, FUN, and then
MONTR. The first message will appear. Pressing MONTR again will clear the
present message and display the next error message. Continue pressing
MONTR until all messages have been cleared.

Although error messages can be accessed in any mode, they can be cleared
only in PROGRAM mode.

Key Sequence

���������	� �	�
������	� Section 4-5

�4

4-6 Inputting, Modifying, and Checking the Program

Once a program is written in mnemonic code, it can be input directly into the
PC from a Programming Console. Mnemonic code is keyed into Program
Memory addresses from the Programming Console. Checking the program
involves a syntax check to see that the program has been written according
to syntax rules. once syntax errors are corrected, a trial execution can begin
and, finally, correction under actual operating conditions can be made.

The operations required to input a program are explained below. Operations
to modify programs that already exist in memory are also provided in this
section, as well as the procedure to obtain the current cycle time.

Before starting to input a program, check to see whether there is a program
already loaded. If there is a program already loaded that you do not need,
clear it first using the program memory clear key sequence, then input the
new program. If you need the previous program, be sure to check it with the
program check key sequence and correct it as required. Further debugging
methods are provided in Section 7 Debugging and Execution.

4-6-1 Setting and Reading from Program Memory Address

When inputting a program for the first time, it is generally written to Program
Memory starting from address 00000. Because this address appears when
the display is cleared, it is not necessary to specify it.

When inputting a program starting from other than 00000 or to read or modify
a program that already exists in memory, the desired address must be desig-
nated. To designate an address, press CLR and then input the desired ad-
dress. Leading zeros of the address need not be input, i.e., when specifying
an address such as 00053 you need to enter only 53. The contents of the
designated address will not be displayed until the down key is pressed.

Once the down key has been pressed to display the contents of the desig-
nated address, the up and down keys can be used to scroll through Program
Memory. Each time one of these keys is pressed, the next or previous word
in Program Memory will be displayed.

If Program Memory is read in RUN or MONITOR mode, the ON/OFF status
of any displayed bit will also be shown.

Key Sequence

���������& �	%������& ��% ����'��� ��� ��	���� Section 4-6

��

If the following mnemonic code has already been input into Program Memory,
the key inputs below would produce the displays shown.

+++++

++	++

++	++�7'% �88

�% +++++

++	+��7'% ��

'�% ++++�

++	+	�7'% �88

�)� +++

++	+	

�)� H+�	�

++	+��7'% ��

�% ++�++

Address Instruction Operands

00200 LD 00000
00201 AND 00001

00202 TIM 000
0123

00203 LD 00100

4-6-2 Entering or Editing Programs
Programs can be entered or edited only in PROGRAM mode. The write-en-
able switch on the CPU must also be set to ON.

The same procedure is used to either input a program for the first time or to
edit a program that already exists. In either case, the current contents of Pro-
gram Memory is overwritten, i.e., if there is no previous program, the
NOP(00) instruction, which will be written at every address, will be overwrit-
ten.

To input a program, just follow the mnemonic code that was produced from
the ladder diagram, ensuring that the proper address is set before starting.
Once the proper address is displayed, input the first instruction word, press
WRITE. Next, input any operands required, and press WRITE after each, i.e.,
WRITE is pressed at the end of each line of the mnemonic code. When
WRITE is pressed, the designated instruction will be entered and the next
display will appear. If the instruction requires two or more words, the next
display will indicate the next operand required and provide a default value for
it. If the instruction requires only one word, the next address will be dis-
played. Continue inputting each line of the mnemonic code until the entire
program has been entered.

When inputting numeric values for operands, it is not necessary to input lead-
ing zeros. Leading zeros are required only when inputting function codes
(see below). When designating operands, be sure to designate the data area
for all but IR and SR addresses by pressing the corresponding data area key,
and to designate each constant by pressing CONT/#. CONT/# is not required
for counter or timer SVs (see below). The AR area is designated by pressing
SHIFT and then HR. TC numbers as bit operands (i.e., completion flags) are
designated by pressing either TIM or CNT before the address, depending on
whether the TC number has been used to define a timer or a counter. To des-
ignate an indirect DM address, press CH/B before the address (pressing DM
is not necessary for an indirect DM address).

Example

���������& �	%������& ��% ����'��� ��� ��	���� Section 4-6

��

The SV (set value) for a timer or counter is generally entered as a constant,
although inputting the address of a word that holds the SV is also possible.
When inputting an SV as a constant, CONT/# is not required; just input the
numeric value and press WRITE. To designate a word, press CLR and then
input the word address as described above.

The most basic instructions are input using the Programming Console keys
provided for them. All other instructions are entered using function codes.
These function codes are always written after the instruction’s mnemonic. If
no function code is given, there should be a Programming Console key for
that instruction.

To designate the differentiated form of an instruction, press NOT after the
function code.

To input an instruction using a function code, set the address, press FUN,
input the function code including any leading zeros, press NOT if the differen-
tiated form of the instruction is desired, input any bit operands or definers
required on the instruction line, and then press WRITE.

Caution Enter function codes with care and be sure to press SHIFT when required.

Key Sequence

[Address displayed] [Instruction word] [Operand]

Inputting SV for Counters
and Timers

Designating Instructions

���������& �	%������& ��% ����'��� ��� ��	���� Section 4-6

��

The following program can be entered using the key inputs shown below.
Displays will appear as indicated.

+++++

++	++

++	++

�% ++++	

++	+��7'%

��� -++.

++	+�

�)� +++

++	+� �)� %'�'

H++++

++	+� �)�

H+�	�

++	+	�7'%

��� -++.

++	+	

8<� -GG.

++	+	

�)�1 -�!. ++�

++	+	 �)�1 %'�'

H++++

++	+	 �)�1

H+!++

++	+��7'%

��� -++.

Address Instruction Operands

00200 LD 00002
00201 TIM 000

0123

00202 TIMH(15) 001

0500

Example

���������& �	%������& ��% ����'��� ��� ��	���� Section 4-6

�#

The following error messages may appear when inputting a program. Correct
the error as indicated and continue with the input operation. The asterisks in
the displays shown below will be replaced with numeric data, normally an
address, in the actual display.

Message Cause and correction

====� .1 ��� An attempt was made to write to ROM or to write-protected RAM. Be sure a RAM
Unit is mounted and that its write-protect switch is set to OFF.

====.��< �> � The instruction at the last address in memory is not NOP(00). Erase all
unnecessary instructions at the end of the program or use a larger Memory Unit.

====�''� �> � An address was set that is larger than the highest memory in Program Memory.
Input a smaller address

====(7'�7� �� Data has been input in the wrong format or beyond defined limits, e.g., a
hexadecimal value has been input for BCD. Re-input the data. This error will
generate a FALS 00 error.

====$-�
�� �� A data area address has been designated that exceeds the limit of the data area,
e.g., an address is too large. Confirm the requirements for the instruction and
re-enter the address.

4-6-3 Checking the Program
Once a program has been entered, it should be checked for syntax to be
sure that no programming rules have been violated. This check should also
be performed if the program has been changed in any way that might create
a syntax error.

To check the program, input the key sequence shown below. The numbers
indicate the desired check level (see below). When the check level is en-
tered, the program check will start. If an error is discovered, the check will
stop and a display indicating the error will appear. Press SRCH to continue
the check. If an error is not found, the program will be checked through to the
first END(01), with a display indicating when each 64 instructions have been
checked (e.g., display #1 of the example after the following table).

CLR can be pressed to cancel the check after it has been started, and a dis-
play like display #2, in the example, will appear. When the check has reached
the first END, a display like display #3 will appear.

A syntax check can be performed on a program only in PROGRAM mode.

Key Sequence

To check
up to END(01)

To abort

(0, 1, 2, Check levels)

Three levels of program checking are available. The desired level must be
designated to indicate the type of errors that are to be detected. The follow-
ing table provides the error types, displays, and explanations of all syntax
errors. Check level 0 checks for type A, B, and C errors; check level 1, for
type A and B errors; and check level 2, for type A errors only.

The address where the error was generated will also be displayed.

Error Messages

Check Levels and Error
Messages

���������& �	%������& ��% ����'��� ��� ��	���� Section 4-6

�'

Many of the following errors are for instructions that have not yet been de-
scribed. Refer to 4-7 Controlling Bit Status or Section 5 Instruction Set for
details on these.

Type Message Meaning and appropriate response

Type A ????? The program has been lost. Re-enter the program.

�
' $
(7� There is no END(01) in the program. Write END(01) at the final address in the program.

,$�,/$7 �� The number of logic blocks and logic block instructions does not agree, i.e., either LD
or LD NOT has been used to start a logic block whose execution condition has not been
used by another instruction, or a logic block instruction has been used that does not
have the required number of logic blocks. Check your program.

1�,
 �� An instruction is in the wrong place in the program. Check instruction requirements and
correct the program.

'/.1 The same jump number, block number, or subroutine number has been used twice.
Correct the program so that the same number is only used once for each. (Jump
number 00 may be used as often as required.)

(3
 /
' 2' SBS(91) has been programmed for a subroutine number that does not exist. Correct
the subroutine number or program the required subroutine.

@� /
' 2' A JME(04) is missing for a JMP(05). Correct the jump number or insert the proper
JME(04).

(7 . �� STEP(08) with a section number and STEP(08) without a section number have been
used correctly. Check STEP(08) programming requirements and correct the program.

Type B $1��$1, �� IL(02) and ILC(03) are not used in pairs. Correct the program so that each IL(02) has
a unique ILC(03). Although this error message will appear if more than one IL(02) is
used with the same ILC(03), the program will executed as written. Make sure your
program is written as desired before proceeding.

@�.��@� �� JMP(04) 00 and JME(05) 00 are not used in pairs. Although this error message will
appear if more than one JMP(04) 00 is used with the same JME(05) 00, the program
will be executed as written. Make sure your program is written as desired before
proceeding.

(3
��� 7 �� If the displayed address is that of SBN(92), two different subroutines have been defined
with the same subroutine number. Change one of the subroutine numbers or delete one
of the subroutines. If the displayed address is that of RET(93), RET(93) has not been
used properly. Check requirements for RET(93) and correct the program.

Type C @�. /
' 2' JME(05) has been used with no JMP(04) with the same jump number. Add a JMP(04)
with the same number or delete the JME(05) that is not being used.

(3(/
' 2' A subroutine exists that is not called by SBS(91). Program a subroutine call in the
proper place, or delete the subroutine if it is not required.

Note The Programming Console does not check whether output bits are controlled
by more than one instruction. Check the program from the LSS, FIT, or GPC
to check for duplicate output bits.

���������& �	%������& ��% ����'��� ��� ��	���� Section 4-6

�(

The following example shows some of the displays that can appear as a re-
sult of a program check.

Display #2

Display #3

Halts program check

Check continues until END(01)

When errors are found

Display #1

++�	*���= �1:7�%

+	+++���= �1:

7�% -+�.-	
&:6.

++�&*�)��<)� 7��

�<� ++	++

++	++)��)�� 7��

)�� -+�.

+	+++�� 7�%)�,��

7�%

+++++

+++++���= �1:

�1:�797� -+�	.G

+++$����= �1:

4-6-4 Displaying the Cycle Time
Once the program has been cleared of syntax errors, the cycle time should
be checked. This is possible only in RUN or MONITOR mode while the pro-
gram is being executed. See Section 6 Program Execution Timing for details
on the cycle time.

To display the current average cycle time, press CLR then MONTR. The time
displayed by this operation is a typical cycle time. The differences in dis-
played values depend on the execution conditions that exist when MONTR is
pressed.

Note “SCAN TIME” is displayed instead of cycle time.

Example

+++++

+++++,�'� �)�7

+!�
��,

+++++,�'� �)�7

+!�
0�,

Example

���������& �	%������& ��% ����'��� ��� ��	���� Section 4-6

��

4-6-5 Program Searches
The program can be searched for occurrences of any designated instruction
or data area address used in an instruction. Searches can be performed from
any currently displayed address or from a cleared display.

To designate a bit address, press SHIFT, press CONT/#, then input the ad-
dress, including any data area designation required, and press SRCH. To
designate an instruction, input the instruction just as when inputting the pro-
gram and press SRCH. Once an occurrence of an instruction or bit address
has been found, any additional occurrences of the same instruction or bit can
be found by pressing SRCH again. SRCH’G will be displayed while a search
is in progress.

When the first word of a multiword instruction is displayed for a search opera-
tion, the other words of the instruction can be displayed by pressing the down
key before continuing the search.

If Program Memory is read in RUN or MONITOR mode, the ON/OFF status
of any bit displayed will also be shown.

Key Sequence

���������& �	%������& ��% ����'��� ��� ��	���� Section 4-6

�,

+++++

+++++

�% +++++

++	++,��1

�% +++++

++	+	

�% +++++

+	+++,��1

7�% -+�.-+	
&:6.

+++++

++�++

++�++

�)� ++�

++	+�,��1

�)� ++�

++	+� �)� %'�'

H+�	�

+++++

+++++���� ,��1

���� ++++!

++	++���� ,��1

�% ++++!

++	+����� ,��1

'�% ++++!

+	+++

7�% -+�.-+	
&:6.

Example:
Instruction Search

Example:
Bit Search

���������& �	%������& ��% ����'��� ��� ��	���� Section 4-6

�"

4-6-6 Inserting and Deleting Instructions
In PROGRAM mode, any instruction that is currently displayed can be de-
leted or another instruction can be inserted before it. These are not possible
in RUN or MONITOR modes.

To insert an instruction, display the instruction before which you want the new
instruction to be placed, input the instruction word in the same way as when
inputting a program initially, and then press INS and the down key. If other
words are required for the instruction, input these in the same way as when
inputting the program initially.

To delete an instruction, display the instruction word of the instruction to be
deleted and then press DEL and the up key. All the words for the designated
instruction will be deleted.

Caution Be careful not to inadvertently delete instructions; there is no way to recover
them without reinputting them completely.

Key Sequences

When an instruction is inserted or deleted, all addresses in Program Memory
following the operation are adjusted automatically so that there are no blank
addresses or no unaddressed instructions.

The following mnemonic code shows the changes that are achieved in a pro-
gram through the key sequences and displays shown below.

Original Program

Address Instruction Operands

00000 LD 00100
00001 AND 00101

00002 LD 00201
00003 AND NOT 00102

00004 OR LD --
00005 AND 00103

00006 AND NOT 00104
00007 OUT 00201
00008 END(01) --

0010500100 00103 0010400101

00201

END(01)

00102

00201

Delete

0010400100 00103

00105

00101

00201

END(01)

00102

00201

Before Insertion: Before Deletion:

Example

���������& �	%������& ��% ����'��� ��� ��	���� Section 4-6

,4

The following key inputs and displays show the procedure for achieving the
program changes shown above.

Find the address
prior to the inser-
tion point

Insert the
instruction

Program After Insertion

Inserting an Instruction

+++++

+++++

�<� +++++

+++++

�<� ++	+�

++	+&,��1

�<� ++	+�

++	+$�7'%

'�% ��� ++�+�

++	+$

'�% +++++

++	+$

'�% ++�+!

++	+$)�,7��G

'�% ++�+!

++	+&)�,7�� 7�%

'�% ��� ++�+�

++	+$�7'%

'�% ++�+!

Address Instruction Operands

00000 LD 00100
00001 AND 00101
00002 LD 00201

00003 AND NOT 00102

00004 OR LD --
00005 AND 00103
00006 AND 00105

00007 AND NOT 00104
00008 OUT 00201

00009 END(01) --

���������& �	%������& ��% ����'��� ��� ��	���� Section 4-6

,�

Find the instruction
that requires deletion.

Confirm that this is the
instruction to be deleted.

Program After Deletion

Deleting an Instruction

+++++

+++++

�<� +++++

+++++

�<� ++	+�

++	+*,��1

�<� ++	+�

++	+&�7'%

'�% ��� ++�+�

++	+& %7�7�7G

'�% ��� ++�+�

++	+&%7�7�7 7�%

�<� ++	+�

++	+$�7'%

'�% ++�+!

Address Instruction Operands

00000 LD 00100
00001 AND 00101

00002 LD 00201
00003 AND NOT 00102

00004 OR LD --
00005 AND 00103

00006 AND 00105
00007 OUT 00201
00008 END(01) --

4-6-7 Branching Instruction Lines

When an instruction line branches into two or more lines, it is sometimes
necessary to use either interlocks or TR bits to maintain the execution condi-
tion that existed at a branching point. This is because instruction lines are
executed across to a right-hand instruction before returning to the branching
point to execute instructions one a branch line. If a condition exists on any of
the instruction lines after the branching point, the execution condition could
change during this time making proper execution impossible. The following
diagrams illustrate this. In both diagrams, instruction 1 is executed before
returning to the branching point and moving on to the branch line leading to
instruction 2.

Instruction 1

00002

00000

Instruction 2

Branching
point

Instruction 1

00002

00000

Instruction 2

Branching
point

Diagram B: Incorrect Operation

Diagram A: Correct Operation

00001

Address Instruction Operands

00000 LD 00000
00001 Instruction 1
00002 AND 00002

00003 Instruction 2

Address Instruction Operands

00000 LD 00000
00001 AND 00001

00002 Instruction 1
00003 AND 00002

00004 Instruction 2

���������& �	%������& ��% ����'��� ��� ��	���� Section 4-6

,�

If, as shown in diagram A, the execution condition that existed at the branch-
ing point cannot be changed before returning to the branch line (instructions
at the far right do not change the execution condition), then the branch line
will be executed correctly and no special programming measure is required.

If, as shown in diagram B, a condition exists between the branching point
and the last instruction on the top instruction line, the execution condition at
the branching point and the execution condition after completing the top in-
struction line will sometimes be different, making it impossible to ensure cor-
rect execution of the branch line.

There are two means of programming branching programs to preserve the
execution condition. One is to use TR bits; the other, to use interlocks
(IL(02)/IL(03)).

The TR area provides eight bits, TR 0 through TR 7, that can be used to tem-
porarily preserve execution conditions. If a TR bit is placed at a branching
point, the current execution condition will be stored at the designated TR bit.
When returning to the branching point, the TR bit restores the execution sta-
tus that was saved when the branching point was first reached in program
execution.

The previous diagram B can be written as shown below to ensure correct
execution. In mnemonic code, the execution condition is stored at the
branching point using the TR bit as the operand of the OUTPUT instruction.
This execution condition is then restored after executing the right-hand in-
struction by using the same TR bit as the operand of a LOAD instruction

Instruction 1

00002

00000

Instruction 2

Diagram B: Corrected Using a TR bit

00001
TR 0 Address Instruction Operands

00000 LD 00000
00001 OUT TR 0

00002 AND 00001
00003 Instruction 1

00004 LD TR 0
00005 AND 00002

00006 Instruction 2

In terms of actual instructions the above diagram would be as follows: The
status of IR 00000 is loaded (a LOAD instruction) to establish the initial ex-
ecution condition. This execution condition is then output using an OUTPUT
instruction to TR 0 to store the execution condition at the branching point.
The execution condition is then ANDed with the status of IR 00001 and in-
struction 1 is executed accordingly. The execution condition that was stored
at the branching point is then re-loaded (a LOAD instruction with TR 0 as the
operand), this is ANDed with the status of IR 00002, and instruction 2 is ex-
ecuted accordingly.

TR Bits

���������& �	%������& ��% ����'��� ��� ��	���� Section 4-6

,�

The following example shows an application using two TR bits.

Instruction 1

00003

00000 00002
TR 1

00005

TR 0
00001

00004

Instruction 2

Instruction 3

Instruction 4

Address Instruction Operands

00000 LD 00000

00001 OUT TR 0
00002 AND 00001
00003 OUT TR 1

00004 AND 00002

00005 OUT 00500
00006 LD TR 1
00007 AND 00003

00008 OUT 00501

00009 LD TR 0
00010 AND 00004
00011 OUT 00502

00012 LD TR 0
00013 AND NOT 00005

00014 OUT 00503

In this example, TR 0 and TR 1 are used to store the execution conditions at
the branching points. After executing instruction 1, the execution condition
stored in TR 1 is loaded for an AND with the status IR 00003. The execution
condition stored in TR 0 is loaded twice, the first time for an AND with the
status of IR 00004 and the second time for an AND with the inverse of the
status of IR 00005.

TR bits can be used as many times as required as long as the same TR bit is
not used more than once in the same instruction block. Here, a new instruc-
tion block is begun each time execution returns to the bus bar. If, in a single
instruction block, it is necessary to have more than eight branching points
that require the execution condition be saved, interlocks (which are described
next) must be used.

When drawing a ladder diagram, be careful not to use TR bits unless neces-
sary. Often the number of instructions required for a program can be reduced
and ease of understanding a program increased by redrawing a diagram that
would otherwise required TR bits. In both of the following pairs of diagrams,
the bottom versions require fewer instructions and do not require TR bits. In
the first example, this is achieved by reorganizing the parts of the instruction
block: the bottom one, by separating the second OUTPUT instruction and
using another LOAD instruction to create the proper execution condition for
it.

���������& �	%������& ��% ����'��� ��� ��	���� Section 4-6

,#

Note Although simplifying programs is always a concern, the order of execution of
instructions is sometimes important. For example, a MOVE instruction may
be required before the execution of a BINARY ADD instruction to place the
proper data in the required operand word. Be sure that you have considered
execution order before reorganizing a program to simplify it.

Instruction 1
00000

Instruction 2

00001
TR 0

Instruction 2
00000

Instruction 1
00001

Instruction 1

00000

Instruction 2

00003

TR 0
00001

00004

00002

00001 00003

00000

00004

00002

00001

Instruction 1

Instruction 2

Note TR bits are only used when programming using mnemonic code. They are
not necessary when inputting ladder diagrams directly, as is possible from a
GPC. The above limitations on the number of branching points requiring TR
bits, and considerations on methods to reduce the number of programming
instructions, still hold.

The problem of storing execution conditions at branching points can also be
handled by using the INTERLOCK (IL(02)) and INTERLOCK CLEAR
(ILC(03)) instructions to eliminate the branching point completely while allow-
ing a specific execution condition to control a group of instructions. The IN-
TERLOCK and INTERLOCK CLEAR instructions are always used together.

Interlocks

���������& �	%������& ��% ����'��� ��� ��	���� Section 4-6

,'

When an INTERLOCK instruction is placed before a section of a ladder pro-
gram, the execution condition for the INTERLOCK instruction will control the
execution of all instruction up to the next INTERLOCK CLEAR instruction. If
the execution condition for the INTERLOCK instruction is OFF, all right-hand
instructions through the next INTERLOCK CLEAR instruction will be ex-
ecuted with OFF execution conditions to reset the entire section of the ladder
diagram. The effect that this has on particular instructions is described in 5-7
INTERLOCK and INTERLOCK CLEAR -- IL(02) and ILC(03).

Diagram B on page 81 can also be corrected with an interlock. Here, the con-
ditions leading up to the branching point are placed on an instruction line for
the INTERLOCK instruction, all of lines leading from the branching point are
written as separate instruction lines, and another instruction line is added for
the INTERLOCK CLEAR instruction. No conditions are allowed on the in-
struction line for INTERLOCK CLEAR. Note that neither INTERLOCK nor
INTERLOCK CLEAR requires an operand.

Instruction 1

00002

00000

Instruction 2

00001

ILC(03)

IL(02) Address Instruction Operands

00000 LD 00000

00001 IL(02) ---
00002 LD 00001
00003 Instruction 1

00004 LD 00002
00005 Instruction 2

00006 ILC(03) ---

If IR 00000 is ON in the revised version of diagram B, above, the status of IR
00001 and that of IR 00002 would determine the execution conditions for in-
structions 1 and 2, respectively. Because IR 00000 is ON, this would produce
the same results as ANDing the status of each of these bits. If IR 00000 is
OFF, the INTERLOCK instruction would produce an OFF execution condition
for instructions 1 and 2 and then execution would continue with the instruc-
tion line following the INTERLOCK CLEAR instruction.

As shown in the following diagram, more than one INTERLOCK instruction
can be used within one instruction block; each is effective through the next
INTERLOCK CLEAR instruction.

Instruction 1

00000

Instruction 2

00001

ILC(03)

IL(02)

00004

Instruction 3

Instruction 4
00006

00005

00003

00002

IL(02)

Address Instruction Operands

00000 LD 00000
00001 IL(02) ---

00002 LD 00001
00003 Instruction 1

00004 LD 00002
00005 IL(02) ---

00006 LD 00003
00007 AND NOT 00004

00008 Instruction 2
00009 LD 00005

00010 Instruction 3
00011 LD 00006

00012 Instruction 4
00013 ILC(03) ---

���������& �	%������& ��% ����'��� ��� ��	���� Section 4-6

,(

If IR 00000 in the above diagram is OFF (i.e., if the execution condition for
the first INTERLOCK instruction is OFF), instructions 1 through 4 would be
executed with OFF execution conditions and execution would move to the
instruction following the INTERLOCK CLEAR instruction. If IR 00000 is ON,
the status of IR 00001 would be loaded as the execution condition for instruc-
tion 1 and then the status of IR 00002 would be loaded to form the execution
condition for the second INTERLOCK instruction. If IR 00002 is OFF, instruc-
tions 2 through 4 will be executed with OFF execution conditions. If IR 00002
is ON, IR 00003, IR 00005, and IR 00006 will determine the first execution
condition in new instruction lines.

4-6-8 Jumps
A specific section of a program can be skipped according to a designated
execution condition. Although this is similar to what happens when the exe-
cution condition for an INTERLOCK instruction is OFF, with jumps, the oper-
ands for all instructions maintain status. Jumps can therefore be used to con-
trol devices that require a sustained output, e.g., pneumatics and hydraulics,
whereas interlocks can be used to control devices that do not required a sus-
tained output, e.g., electronic instruments.

Jumps are created using the JUMP (JMP(04)) and JUMP END (JME(05))
instructions. If the execution condition for a JUMP instruction is ON, the pro-
gram is executed normally as if the jump did not exist. If the execution condi-
tion for the JUMP instruction is OFF, program execution moves immediately
to a JUMP END instruction without changing the status of anything between
the JUMP and JUMP END instruction.

All JUMP and JUMP END instructions are assigned jump numbers ranging
between 00 and 49. There are two types of jumps. The jump number used
determines the type of jump.

A jump can be defined using jump numbers 01 through 49 only once, i.e.,
each of these numbers can be used once in a JUMP instruction and once in
a JUMP END instruction. When a JUMP instruction assigned one of these
numbers is executed, execution moves immediately to the JUMP END in-
struction that has the same number as if all of the instruction between them
did not exist. Diagram B from the TR bit and interlock example could be re-
drawn as shown below using a jump. Although 01 has been used as the
jump number, any number between 01 and 49 could be used as long as it
has not already been used in a different part of the program. JUMP and
JUMP END require no other operand and JUMP END never has conditions
on the instruction line leading to it.

Instruction 1

00002

00000

Instruction 2

Diagram B: Corrected with a Jump

00001

JME(05) 01

JMP(04) 01 Address Instruction Operands

00000 LD 00000

00001 JMP(04) 01
00002 LD 00001

00003 Instruction 1
00004 LD 00002

00005 Instruction 2
00006 JME(05) 01

This version of diagram B would have a shorter execution time when 00000
was OFF than any of the other versions.

���������& �	%������& ��% ����'��� ��� ��	���� Section 4-6

,�

The other type of jump is created with a jump number of 00. As many jumps
as desired can be created using jump number 00 and JUMP instructions us-
ing 00 can be used consecutively without a JUMP END using 00 between
them. It is even possible for all JUMP 00 instructions to move program
execution to the same JUMP END 00, i.e., only one JUMP END 00
instruction is required for all JUMP 00 instruction in the program. When 00 is
used as the jump number for a JUMP instruction, program execution moves
to the instruction following the next JUMP END instruction with a jump num-
ber of 00. Although, as in all jumps, no status is changed and no instructions
are executed between the JUMP 00 and JUMP END 00 instructions, the pro-
gram must search for the next JUMP END 00 instruction, producing a slightly
longer execution time.

Execution of programs containing multiple JUMP 00 instructions for one
JUMP END 00 instruction is similar to that of interlocked sections. The follow-
ing diagram is the same as that used for the interlock example above, except
redrawn with jumps. The execution of this diagram would differ from that of
the diagram described above (e.g., in the previous diagram interlocks would
reset certain parts of the interlocked section, however, jumps do not affect
the status of any bit between the JUMP and JUMP END instructions).

Instruction 1

00000

Instruction 2

00001

JME(05) 00

JMP(04) 00

00004

Instruction 3

Instruction 4
00006

00005

00003

00002

JMP(04) 00

Address Instruction Operands

00000 LD 00000

00001 JMP(04) 00
00002 LD 00001
00003 Instruction 1

00004 LD 00002

00005 JMP(04) 00
00006 LD 00003
00007 AND NOT 00004

00008 Instruction 2

00009 LD 00005
00010 Instruction 3
00011 LD 00006

00012 Instruction 4
00013 JME(05) 00

���������& �	%������& ��% ����'��� ��� ��	���� Section 4-6

,,

4-7 Controlling Bit Status

There are five instructions that can be used generally to control individual bit
status. These are the OUTPUT, OUTPUT NOT, DIFFERENTIATE UP, DIF-
FERENTIATE DOWN, and KEEP instructions. All of these instructions ap-
pear as the last instruction in an instruction line and take a bit address for an
operand. Although details are provided in 5-6 Bit Control Instructions, these
instructions (except for OUTPUT and OUTPUT NOT, which have already
been introduced) are described here because of their importance in most
programs. Although these instructions are used to turn ON and OFF output
bits in the IR area (i.e., to send or stop output signals to external devices),
they are also used to control the status of other bits in the IR area or in other
data areas.

4-7-1 DIFFERENTIATE UP and DIFFERENTIATE DOWN

DIFFERENTIATE UP and DIFFERENTIATE DOWN instructions are used to
turn the operand bit ON for one scan at a time. The DIFFERENTIATE UP
instruction turns ON the operand bit for one scan after the execution condi-
tion for it goes from OFF to ON; the DIFFERENTIATE DOWN instruction
turns ON the operand bit for one scan after the execution condition for it goes
from ON to OFF. Both of these instructions require only one line of mnemonic
code.

00000

00001

DIFU(13) 00200

DIFD(14) 00201

Address Instruction Operands

00000 LD 00000
00001 DIFU(13) 00200

Address Instruction Operands

00000 LD 00001

00001 DIFD(14) 00201

Here, IR 00200 will be turned ON for one scan after IR 00000 goes ON. The
next time DIFU(13) 00200 is executed, IR 00200 will be turned OFF, regard-
less of the status of IR 00000. With the DIFFERENTIATE DOWN instruction,
IR 00201 will be turned ON for one scan after IR 00001 goes OFF (IR 00201
will be kept OFF until then), and will be turned OFF the next time DIFD(14)
00201 is executed.

4-7-2 KEEP

The KEEP instruction is used to maintain the status of the operand bit based
on two execution conditions. To do this, the KEEP instruction is connected to
two instruction lines. When the execution condition at the end of the first in-
struction line is ON, the operand bit of the KEEP instruction is turned ON.
When the execution condition at the end of the second instruction line is ON,
the operand bit of the KEEP instruction is turned OFF. The operand bit for the
KEEP instruction will maintain its ON or OFF status even if it is located in an
interlocked section of the diagram.

�	���	

��� #�� ������ Section 4-7

,"

In the following example, HR 0000 will be turned ON when IR 00002 is ON
and IR 00003 is OFF. HR 0000 will then remain ON until either IR 00004 or
IR 00005 turns ON. With KEEP, as with all instructions requiring more than
one instruction line, the instruction lines are coded first before the instruction
that they control.

00005
R: reset input

S: set input KEEP(11)

HR 0000

Address Instruction Operands

00000 LD 00002
00001 AND NOT 00003

00002 LD 00004
00003 OR 00005

00004 KEEP(11) HR 0000

00002

00004

00003

4-7-3 Self-maintaining Bits (Seal)
Although the KEEP instruction can be used to create self-maintaining bits, it
is sometimes necessary to create self-maintaining bits in another way so that
they can be turned OFF when in an interlocked section of a program.

To create a self-maintaining bit, the operand bit of an OUTPUT instruction is
used as a condition for the same OUTPUT instruction in an OR setup so that
the operand bit of the OUTPUT instruction will remain ON or OFF until
changes occur in other bits. At least one other condition is used just before
the OUTPUT instruction to function as a reset. Without this reset, there would
be no way to control the operand bit of the OUTPUT instruction.

The above diagram for the KEEP instruction can be rewritten as shown be-
low. The only difference in these diagrams would be their operation in an in-
terlocked program section when the execution condition for the INTERLOCK
instruction was ON. Here, just as in the same diagram using the KEEP in-
struction, two reset bits are used, i.e., HR 0000 can be turned OFF by turning
ON either IR 00004 or IR 00005.

00002 00003

HR 0000

HR 0000

00004

00005

Address Instruction Operands

00000 LD 00002
00001 AND NOT 00003

00002 OR HR 0000
00003 AND NOT 00004

00004 OR NOT 00005
00005 OUT HR 0000

4-8 Work Bits (Internal Relays)
In programming, combining conditions to directly produce execution condi-
tions is often extremely difficult. These difficulties are easily overcome, how-
ever, by using certain bits to trigger other instructions indirectly. Such pro-
gramming is achieved by using work bits. Sometimes entire words are re-
quired for these purposes. These words are referred to as work words.

Work bits are not transferred to or from the PC. They are bits selected by the
programmer to facilitate programming as described above. I/O bits and other
dedicated bits cannot be used as works bits. All bits in the IR area that are
not allocated as I/O bits, and certain unused bits in the AR area, are avail-
able for use as work bits. Be careful to keep an accurate record of how and
where you use work bits. This helps in program planning and writing, and
also aids in debugging operations.

(�' #��� ��������
 ��
��� Section 4-8

"4

Work Bit Applications Examples given later in this subsection show two of the most common ways
to employ work bits. These should act as a guide to the almost limitless num-
ber of ways in which the work bits can be used. Whenever difficulties arise in
programming a control action, consideration should be given to work bits and
how they might be used to simplify programming.

Work bits are often used with the OUTPUT, OUTPUT NOT, DIFFERENTIATE
UP, DIFFERENTIATE DOWN, and KEEP instructions. The work bit is used
first as the operand for one of these instructions so that later it can be used
as a condition that will determine how other instructions will be executed.
Work bits can also be used with other instructions, e.g., with the SHIFT REG-
ISTER instruction (SFT(10)). An example of the use of work words and bits
with the SHIFT REGISTER instruction is provided in 5-11-1 SHIFT REGIS-
TER -- SFT(10).

Although they are not always specifically referred to as work bits, many of the
bits used in the examples in Section 5 Instruction Set use work bits. Under-
standing the use of these bits is essential to effective programming.

Work bits can be used to simplify programming when a certain combination
of conditions is repeatedly used in combination with other conditions. In the
following example, IR 00000, IR 00001, IR 00002, and IR 00003 are com-
bined in a logic block that stores the resulting execution condition as the sta-
tus of IR 24600. IR 24600 is then combined with various other conditions to
determine output conditions for IR 00100, IR 00101, and IR 00102, i.e., to
turn the outputs allocated to these bits ON or OFF.

00000

00003

00001

00004

00002

00005

00004

00007

00006

0000524600

24600

24600

24600

00100

00101

00102

Address Instruction Operands

00000 LD 00000
00001 AND NOT 00001
00002 OR 00002

00003 OR NOT 00003

00004 OUT 24600
00005 LD 24600
00006 AND 00004

00007 AND NOT 00005
00008 OUT 00100

00009 LD 24600
00010 OR NOT 00004

00011 AND 00005
00012 OUT 00101
00013 LD NOT 24600

00014 OR 00006

00015 OR 00007
00016 OUT 00102

Reducing Complex
Conditions

(�' #��� ��������
 ��
��� Section 4-8

"�

Differentiated Conditions Work bits can also be used if differential treatment is necessary for some, but
not all, of the conditions required for execution of an instruction. In this exam-
ple, IR 00100 must be left ON continuously as long as IR 00001 is ON and
both IR 00002 and IR 00003 are OFF, or as long as IR 00004 is ON and IR
00005 is OFF. It must be turned ON for only one scan each time IR 00000
turns ON (unless one of the preceding conditions is keeping it ON continu-
ously).

This action is easily programmed by using IR 22500 as a work bit as the op-
erand of the DIFFERENTIATE UP instruction (DIFU(13)). When IR 00000
turns ON, IR 22500 will be turned ON for one scan and then be turned OFF
the next scan by DIFU(13). Assuming the other conditions controlling IR
00100 are not keeping it ON, the work bit IR 22500 will turn IR 00100 ON for
one scan only.

22500

DIFU(13) 22500

00000

00001 00002 00003

00004 00005

00100

Address Instruction Operands

00000 LD 00000

00001 DIFU(13) 22500
00002 LD 22500
00003 LD 00001

00004 AND NOT 00002

00005 AND NOT 00003
00006 OR LD ---
00007 LD 00004

00008 AND NOT 00005

00009 OR LD ---
00010 OUT 00100

4-9 Programming Precautions
The number of conditions that can be used in series or parallel is unlimited
as long as the memory capacity of the PC is not exceeded. Therefore, use as
many conditions as required to draw a clear diagram. Although very compli-
cated diagrams can be drawn with instruction lines, there must not be any
conditions on lines running vertically between two other instruction lines. Dia-
gram A shown below, for example, is not possible, and should be drawn as
diagram B. Mnemonic code is provided for diagram B only; coding diagram A
would be impossible.

Instruction 2

Instruction 1

00002

00003

00000

00001

00004

Diagram A

Instruction 1

00004

00003

00000

00001

Diagram B

00002

Instruction 2

0000400000

00001

Address Instruction Operands

00000 LD 00001

00001 AND 00004
00002 OR 00000
00003 AND 00002

00004 Instruction 1

00005 LD 00000
00006 AND 00004
00007 OR 00001

00008 AND NOT 00003
00009 Instruction 2

��	�������� ��������	�� Section 4-9

"�

The number of times any particular bit can be assigned to conditions is not
limited, so use them as many times as required to simplify your program.
Often, complicated programs are the result of attempts to reduce the number
of times a bit is used.

Except for instructions for which conditions are not allowed (e.g., INTER-
LOCK CLEAR and JUMP END, see below), every instruction line must also
have at least one condition on it to determine the execution condition for the
instruction at the right. Again, diagram A , below, must be drawn as diagram
B. If an instruction must be continuously executed (e.g., if an output must
always be kept ON while the program is being executed), the Always ON
Flag (SR 25313) in the SR area can be used.

Instruction
25313

Instruction

Diagram A

Diagram B

Address Instruction Operands

00000 LD 25313
00001 Instruction

There are a few exceptions to this rule, including the INTERLOCK CLEAR,
JUMP END, and step instructions. Each of these instructions is used as the
second of a pair of instructions and is controlled by the execution condition of
the first of the pair. Conditions should not be placed on the instruction lines
leading to these instructions. Refer to Section 5 Instruction Set for details.

When drawing ladder diagrams, it is important to keep in mind the number of
instructions that will be required to input it. In diagram A, below, an OR LOAD
instruction will be required to combine the top and bottom instruction lines.
This can be avoided by redrawing as shown in diagram B so that no AND
LOAD or OR LOAD instructions are required. Refer to 5-5-2 AND LOAD and
OR LOAD for more details and 4-6 Inputting, Modifying and Checking the
Program for further examples.

00000

00001 00207

00207

00001

00000

00207
00207

Diagram A

Diagram B

Address Instruction Operands

00000 LD 00000

00001 LD 00001
00002 AND 00207
00003 OR LD ---

00004 OUT 00207

Address Instruction Operands

00000 LD 00001

00001 AND 00207
00002 OR 00000
00003 OUT 00207

��	�������� ��������	�� Section 4-9

"�

4-10 Program Execution
When program execution is started, the CPU scans the program from top to
bottom, checking all conditions and executing all instructions accordingly as it
moves down the bus bar. It is important that instructions be placed in the
proper order so that, for example, the desired data is moved to a word before
that word is used as the operand for an instruction. Remember that an in-
struction line is completed to the terminal instruction at the right before exe-
cuting instruction lines branching from the first instruction line to other termi-
nal instructions at the right.

Program execution is only one of the tasks carried out by the CPU as part of
the scan time. Refer to Section 6 Program Execution Timing for details.

��	����)!�����	� Section 4-10

"'

��
�
�� '

���������� ���

���� ��� ��� �/"�#��� �#�� ��� ��� ��� �� �� �#�
� ���� 1� �"� �� ��� ��� ��� �� � #�� "������� �� �#���� ��#
�#� ����
(��5 �# # #��#�5 #�� ��#
� ���� �� � �#��

��� ��� ��� ���� #�� ������(�� �� ��������
 ��(��� ���� (� ��� ��� ���
���"
 �����
���"� ������� �#���� %�#
�#�)��

� ��� ����5 4� ��� ���)�� ��� ����5 ����� #�� ���� ��)�� ��� ����5 %# # ,��� ��
)�� ��� ����5 %# # �������)�� ����
 ����5 %# # ���"#�����)�� ��� ����5 %# # ����������)�� ��� ����5 4��#�� �#����# ���)�� ��� ����5 4�% �#����# ���

)�� ��� ����5 ��
��)�� ��� ����5 ,�(��� ����5 #�� ,"���#�)�� ��� ����

,��� ��� ��� ����5 ���� #� ����� #�� ���� �� ��� ��� ����5 #�� ���� � ��� ��� �/��� ��� �� � ��� ��� ��� ����5 �

5 # �)�
���"�� ��� ��#
 ��
� (� ���� � ��� �� # (� ���� �� ��� "����� �� ��� �� ���� �#� �/"����
 '� ���
� ���� � ���
��� ��� ���� #�� �� �� ���� � ��� ��� �� "� (� � ����
� �� �� "� ��� ��� ���5 ��� �#� (� ���� � ��� ��� �/��� ��� ��

� ��� ��� ��� ���� #� ����
 ��� �� "� ��� ��� ���� ���� �� �/#�"��� �� ��� �#��#� �#� ��������
����#��� (� ��"�#��� (�
� ��� ��� ��� ���� � ������ �� "��
�#� ��� �"������ #""���# ���� � ��� �#� ��� ������
 �� "� (� � ����� ��

!�� �� # ��� 0&

!�)�� ��� ��� 8���# 0&

!�� %# # '��#�5 %������ 9#����5 #�� 8�#
� 0&

!�� %������� �# ��)�� ��� ���� 00

!�! �#���� %�#
�#�)�� ��� ���� �++

!�!�� ��'%5 ��'% ���5 '�%5 '�% ���5 ��5 #�� �� ��� �++

!�!�	 '�% ��'% #�� �� ��'% �+�

!�!�� �����
 ����� ���� #�� � ���)�� ��� ���� �+�

!�$ 4� ��� ���)�� ��� ���� �+�

!�$�� �<��<� #�� �<��<� ��� �� �<� #�� �<� ��� �+�

!�$�	 %)887�7��)'�7 <� #�� %�6� �� %)8<-��. #�� %)8%-��. �+�

!�$�� :77� �� :77�-��. �+$

!�&)��7����: #��)��7����: ��7'� ��)�-+	. #��)��-+�. �+*

!�* ;<�� #�� ;<�� 7�% �� ;��-+�. #�� ;�7-+!. ��+

!�0 7�% �� 7�%-+�. ���

!��+ ����� #�� ���� ��)�� ��� ���� ���

!��+�� �)�7� �� �)� ��	

!��+�	 1)=1�,�77% �)�7� �� �)�1-�!. ��$

!��+�� ��<��7� �� ��� ��&

!��+�� �797�,)4�7 ��<��7� �� ����-�	. �	+

!��+�! �797�,)4�7 %�<� ��<��7� �� �%�-$+. �	�

!��+�$ 1)=1�,�77% ��<��7� �� 1%�-$�. �	�

!��� %# # ,��� ��
 �	0

!����� ,1)8� �7=),�7� �� ,8�-�+. �	0

!����	 6��% ,1)8� �� 6,8�-�$. ���

!����� �797�,)4�7 6��% ,1)8� �� �6,-�&. ��	

!����� '�)�1�7�)� ,1)8� �78� �� ',�-	!. ���

!����! '�)�1�7�)� ,1)8� �)=1� �� ',�-	$. ���

!����$ ���'�7 �78� �� ���-	&. ��!

!����& ���'�7 �)=1� �� ���-	*. ��!

!����* ��7 %)=)� ,1)8� �78� �� ,�%-&�. ��$

!����0 ��7 %)=)� ,1)8� �)=1� �� ,�%-&!. ��$

!�����+ �797�,)4�7 ,1)8� �7=),�7� �� ,8��-*�. ��&

!��	 %# # ������� ��0

!��	�� ��97 �� ��9-	�. ��0

!��	�	 ��97 ��� �� �9�-		. ��0

!��	�� 4���: ��'�,87� �� I87�-&+. ��+

!��	�� 4���: ,7� �� 4,7�-&�. ���

"(

!��	�! %'�' 7I�1'�=7 �� I�1=-&�. ��	

!��	�$ ��97 4)� �� ��94-*	. ���

!��	�& ��97 %)=)� �� ��9%-*�. ���

!��� %# # ���"#����� ��!

!����� ����'�7 �� ���-	+. ��!

!����	 4���: ����'�7 �� 4���-$*. ��*

!��� %# # ���������� �!�

!����� 4�%����4)�'�F �� 4)�-	�. �!�

!����	 4)�'�F����4�% �� 4�%-	�. �!�

!����� 1�<�,����,7���%, �� 1�,-$!. �!	

!����� ,7���%,����1�<�, �� ,�1-$$. �!�

!����! 17I'%7�)�'� ���97�� �� 17I-$0. �!�

!����$ ������$ %7��%7� �� ���I-&$. �!$

!����& �$����� 7���%7� �� %��I-&&. �!*

!����* ',�)) ���97�� �� ',�-*$. �$+

!��! 4�% �#����# ���� �$	

!��!��)���7�7�� ��)��-�*. �$	

!��!�	 %7��7�7�� �� %7�-�0. �$�

!��!�� ,7� �'��F �� ,��-�+. �$�

!��!�� ��7'� �'��F �� ���-��. �$�

!��!�! 4�% '%% �� '%%-�+. �$�

!��!�$ 4�% ,<4��'�� �� ,<4-��. �$!

!��!�& 4�% �<��)��F �� �<�-�	. �$*

!��!�* 4�% %)9)%7 �� %)9-��. �&	

!��$ 4��#�� �#����# ���� �&&

!��$�� 4)�'�F '%% �� '%4-!+. �&&

!��$�	 4)�'�F ,<4��'�� �� ,44-!�. �&0

!��$�� 4)�'�F �<��)��F �� ��4-!	. �*�

!��$�� 4)�'�F %)9)%7 �� %94-!�. �*	

!��& ��
��)�� ��� ���� �*	

!��&�� �����7�7�� �� ���-	0. �*	

!��&�	 ��=)�'� '�% �� '�%6-��. �*�

!��&�� ��=)�'� �� �� ��6-�!. �*�

!��&�� 7I��<,)97 �� �� I��6-�$. �*�

!��&�! 7I��<,)97 ��� �� I��6-�&. �*!

!��* ,�(��� ���� �*$

!��*�� �������� �*$

!��*�	 ,<4��<�)�7 ,�'�� #�� �7�<�� �� ,4�-0	.2�7�-0�. �*$

!��*�� ,<4��<�)�7 7��7� �� ,4,-0�. �*$

!��0 , �")�� ��� ���� �*0

!��0�� ,�7� %78)�7 #�� ,�7� ,�'����,�7�-+*.2,�I�-+0. �*0

!�	+ ,"���#�)�� ��� ���� �0&

!�	+�� 8')�<�7 '�'�� �� 8'�-+$. #��
,797�7 8')�<�7 '�'�� �� 8'�,-+&. �0&

!�	+�	 �F��7 �)�7 �� ,�'�-�*. �0*

!�	+�� %),��'F �7,,'=7 �� �,=-�$. �00

!�	+�� ���= �7,,'=7 �� ��,=-�&. 	++

!�	+�! ,7� ,F,�7� �� ,F,-�0. 	+	

!�	+�$:7F)��<� �� :7F-$. 	+�

!�	+�& �,�	�	� ���� �<��<� �� ��<�-$�. 	+!

!�	+�* �,�	�	� ����)��<� �� �)�-$�. 	�$

!�	+�0 4)� ��<��7� �� 4���-$&. 	�*

!�	+��+ 6'��1%�= �)�7� �78�7,1�� 6%�-0�. 	�*

!�	+���)2� �78�7,1 ��)��8-0&. 	�0

"�

5-1 Notation
In the remainder of this manual, all instructions will be referred to by their
mnemonics. For example, the Output instruction will be called OUT; the AND
Load instruction, AND LD. If you’re not sure of the instruction a mnemonic is
used for, refer to Appendix B Programming Instructions.

If an instruction is assigned a function code, it will be given in parentheses
after the mnemonic. These function codes, which are 2-digit decimal num-
bers, are used to input most instructions into the CPU and are described
briefly below and in more detail in 4-6 Inputting, Modifying and Checking the
Program. A table of instructions listed in order of function codes, is also pro-
vided in Appendix B.

An @ before a mnemonic indicates the differentiated version of that instruc-
tion. Differentiated instructions are explained in 5-4 Differentiated Instruc-
tions.

5-2 Instruction Format
Most instructions have at least one or more operands associated with them.
Operands indicate or provide the data on which an instruction is to be per-
formed. These are sometimes input as the actual numeric values (i.e., as
constants), but are usually the addresses of data area words or bits that con-
tain the data to be used. A bit whose address is designated as an operand is
called an operand bit; a word whose address is designated as an operand is
called an operand word. In some instructions, the word address designated
in an instruction indicates the first of multiple words containing the desired
data.

Each instruction requires one or more words in Program Memory. The first
word is the instruction word, which specifies the instruction and contains any
definers (described below) or operand bits required by the instruction. Other
operands required by the instruction are contained in following words, one
operand per word. Some instructions required up to four words.

A definer is an operand associated with an instruction and contained in the
same word as the instruction itself. These operands define the instruction
rather than telling what data it is to used. Examples of definers are TC num-
bers, which are used in timer and counter instructions to create timers and
counters, as well as jump numbers (which define which Jump instruction is
paired with which Jump End instruction). Bit operands are also contained in
the same word as the instruction itself, although these are not considered
definers.

5-3 Data Areas, Definer Values, and Flags
In this section, each instruction description includes its ladder diagram sym-
bol, the data areas that can be used by its operands, and the values that can
be used as definers. Details for the data areas are also specified by the oper-
and names and the type of data required for each operand (i.e., word or bit
and, for words, hexadecimal or BCD).

Not all addresses in the specified data areas are necessarily allowed for an
operand, e.g., if an operand requires two words, the last word in a data area
cannot be designated as the first word of the operand because all words for a
single operand must be in the same data area. Unless a limit is specified,
any bit/word in the area can be used. Any limitations are specified in a Limi-
tations subsection. Refer to Section 3 Memory Areas for addressing conven-
tions and the addresses of flags and control bits.

���� �����& ������� *�
���& ��% +
��� Section 5-3

",

Caution The IR and SR areas are considered as separate data areas. If an operand
has access to one area, it doesn’t necessarily mean that the same operand
will have access to the other area. The border between the IR and SR areas
can, however, be crossed for a single operand, i.e., the last bit in the IR area
may be specified for an operand that requires more than one word as long as
the SR area is also allowed for that operand.

The Flags subsection lists flags that are affected by execution of an instruc-
tion. These flags include the following SR area flags.

Abbreviation Name Bit

ER Instruction Execution Error Flag 25503

CY Carry Flag 25504

GR Greater Than Flag 25505

EQ Equals Flag 25506

LE Less Than Flag 25507

ER is the flag most commonly used for monitoring an instruction’s execution.
When ER goes ON, it indicates that an error has occurred in attempting to
execute the current instruction. The Flags subsection of each instruction lists
possible reasons for ER being ON. ER will turn ON if operands are not en-
tered correctly. Instructions are not executed when ER is ON. A table of in-
structions and the flags they affect is provided in Appendix D Error and Arith-
metic Flag Operation.

When the DM area is specified for an operand, an indirect address can be
used. Indirect DM addressing is specified by placing an asterisk before the
DM: BDM.

When an indirect DM address is specified, the designated DM word will con-
tain the address of the DM word that contains the data that will be used as
the operand of the instruction. If, for example, BDM 0001 was designated as
the first operand and LR 00 as the second operand of MOV(21), the contents
of DM 0001 was 0324, and DM 0324 contained 5555, the value 5555 would
be moved to LR 00.

MOV(21)

�DM 0001

LR 00

Word Content
DM 0000 4C59
DM 0001 0324
DM 0002 F35A

DM 0324 5555
DM 0325 2506
DM 0326 D541

5555 moved
to LR 00.

Indicates
DM 0324.

Indirect
address

When using indirect addressing, the address of the desired word must be in
BCD and it must specify a word within the DM area. In the above example,
the content of BDM 0000 would have to be in BCD (between 0000 and 0999).

Although data area addresses are most often given as operands, many oper-
ands and all definers are input as constants. The value available for a given
definer or operand depends on the particular instruction that uses it. Con-
stants must also be entered in the form required by the instruction, i.e., in
BCD or in hexadecimal.

Indirect Addressing

Designating Constants

���� �����& ������� *�
���& ��% +
��� Section 5-3

""

5-4 Differentiated Instructions
Most instructions are provided in both differentiated and non-differentiated
forms. Differentiated instructions are distinguished by an @ in front of the
instruction mnemonic.

A non-differentiated instruction is executed each time it is cycled as long as
its execution condition is ON. A differentiated instruction is executed only
once after its execution condition goes from OFF to ON. If the execution con-
dition has not changed or has changed from ON to OFF since the last time
the instruction was cycled, the instruction will not be executed. The following
two examples show how this works with MOV(21) and @MOV(21), which are
used to move the data in the address designated by the first operand to the
address designated by the second operand.

00000

MOV(21)

HR 10

DM 0000Diagram A

00000

@MOV(21)

HR 10

DM 0000Diagram B

Address Instruction Operands

Address Instruction Operands

00000 LD 00000
00001 MOV(21)

HR 10
DM 0000

00000 LD 00000
00001 @MOV(21)

HR 10
DM 0000

In diagram A, the non-differentiated MOV(21) will move the content of HR 10
to DM 0000 whenever it is cycled with 00000. If the cycle time is 80 ms and
00000 remains ON for 2.0 seconds, this move operation will be performed 25
times and only the last value moved to DM 0000 will be preserved there.

In diagram B, the differentiated @MOV(21) will move the content of HR 10 to
DM 0000 only once after 00000 goes ON. Even if 00000 remains ON for 2.0
seconds with the same 80 ms cycle time, the move operation will be exe-
cuted only during the first cycle in which 00000 has changed from OFF to
ON. Because the content of HR 10 could very well change during the 2 sec-
onds while 00000 is ON, the final content of DM 0000 after the 2 seconds
could be different depending on whether MOV(21) or @MOV(21) was used.

All operands, ladder diagram symbols, and other specifications for instruc-
tions are the same regardless of whether the differentiated or non-differen-
tiated form of an instruction is used. When inputting, the same function codes
are also used, but NOT is input after the function code to designate the differ-
entiated form of an instruction. Most, but not all, instructions have differenti-
ated forms.

Refer to 5-7 INTERLOCK and INTERLOCK CLEAR -- IL(02) and IL(03) for
the effects of interlocks on differentiated instructions.

The C20H/C28H/C40H/C60H also provide differentiation instructions:
DIFU(13) and DIFD(14). DIFU(13) operates the same as a differentiated in-
struction, but is used to turn ON a bit for one cycle. DIFD(14) also turns ON a
bit for one cycle, but does it when the execution condition has changed from
ON to OFF. Refer to 5-6-2 DIFFERENTIATE UP and DOWN -- DIFU(13) and
DIFD(14) for details.

�������������% ���������	�� Section 5-4

�44

5-5 Ladder Diagram Instructions
Ladder Diagram instructions include Ladder instructions and Logic Block in-
structions. Ladder instructions correspond to the conditions on the ladder
diagram. Logic block instructions are used to relate more complex parts of
the diagram that cannot be programmed with Ladder instructions alone.

5-5-1 LOAD, LOAD NOT, AND, AND NOT, OR, and OR NOT

B: Bit

IR, SR, AR, HR, TC, LR, TR

Ladder Symbols Operand Data Areas

LOAD -- LD
B

B: Bit

IR, SR, AR, HR, TC, LR
LOAD NOT -- LD NOT B

B: Bit

IR, SR, AR, HR, TC, LR
AND -- AND

B

B: Bit

IR, SR, AR, HR, TC, LR
AND NOT -- AND NOT

B

B: Bit

IR, SR, AR, HR, TC, LR
OR -- OR B

B: Bit

IR, SR, AR, HR, TC, LR
OR NOT -- OR NOT B

There is no limit to the number of any of these instructions, or restrictions in
the order in which they must be used, as long as the memory capacity of the
PC is not exceeded.

These six basic instructions correspond to the conditions on a ladder dia-
gram. As described in Section 4 Writing and Entering Programs, the status of
the bits assigned to each instruction determines the execution conditions for
all other instructions. Each of these instructions and each bit address can be
used as many times as required. Each can be used in as many of these in-
structions as required.

The status of the bit operand (B) assigned to LD or LD NOT determines the
first execution condition. AND takes the logical AND between the execution
condition and the status of its bit operand; AND NOT, the logical AND be-

Limitations

Description

$�%%�� ������� ���������	�� Section 5-5

�4�

tween the execution condition and the inverse of the status of its bit operand.
OR takes the logical OR between the execution condition and the status of its
bit operand; OR NOT, the logical OR between the execution condition and
the inverse of the status of its bit operand. Refer to 4-3-3 Ladder Instructions
for details.

Flags There are no flags affected by these instructions.

5-5-2 AND LOAD and OR LOAD

Ladder Symbol

AND LOAD -- AND LD 00002

00003

00000

00001

Ladder Symbol

OR LOAD -- OR LD 00000 00001

00002 00003

When instructions are combined into blocks that cannot be logically com-
bined using only OR and AND operations, AND LD and OR LD are used.
Whereas AND and OR operations logically combine a bit status and an exe-
cution condition, AND LD and OR LD logically combine two execution condi-
tions, the current one and the last unused one.

In order to draw ladder diagrams, it is not necessary to use AND LD and OR
LD instructions, nor are they necessary when inputting ladder diagrams di-
rectly, as is possible from the GPC. They are required, however, to convert
the program to and input it in mnemonic form. The procedures for these, limi-
tations for different procedures, and examples are provided in 4-6 Inputting,
Modifying, and Checking the Program.

In order to reduce the number of programming instructions required, a basic
understanding of logic block instructions is required. For an introduction to
logic blocks, refer to 4-3-6 Logic Block Instructions.

Flags There are no flags affected by these instructions.

5-5-3 Coding Conditions and Other Instructions
Writing mnemonic code for ladder instructions is described in Section 4 Writ-
ing and Inputting the Program. Converting the information in the ladder dia-
gram symbol for all other instructions follows the same pattern, as described
below, and is not specified for each instruction individually.

Refer to the figures on page 102 for a sample ladder diagram and corre-
sponding mnemonic code written on program coding sheet from Appendix G.

The first word of any instruction defines the instruction and provides any de-
finers. If the instruction requires only a single bit operand with no definer, the
bit operand is also placed on the same line as the mnemonic. All other oper-
ands are placed on lines after the instruction line, one operand per line and in
the same order as they appear in the ladder symbol for the instruction.

The address and instruction columns of the mnemonic code table are filled in
for the instruction word only. For all other lines, the left two columns are left

Description

$�%%�� ������� ���������	�� Section 5-5

�4�

blank. If the instruction requires no definer or bit operand, the data column is
left blank for first line. It is a good idea to cross through any blank data col-
umn spaces (for all instruction words that do not require data) so that the
data column can be quickly cycled to see if any addresses have been left
out.

If an IR or SR address is used in the data column, the left side of the column
is left blank. If any other data area is used, the data area abbreviation is
placed on the left side and the address is place on the right side. If a con-
stant is to be input, the number symbol (#) is placed on the left side of the
data column and the number to be input is placed on the right side. Any num-
bers input as definers in the instruction word do not require the number sym-
bol on the right side. TC bits, once defined as a timer or counter, take a TIM
(timer) or CNT (counter) prefix.

When coding an instruction that has a function code, be sure to write in the
function code, which will be necessary when inputting the instruction via the
Programming Console. Also be sure to designate the differentiated instruc-
tion with the @ symbol.

The following diagram and corresponding mnemonic code illustrate the
points described above.

Address Instruction Data

00000 LD 00000

00001 AND 00001

00002 OR 00002

00003 DIFU(13) 22500

00004 LD 00100

00005 AND NOT 00200

00006 LD 01001

00007 AND NOT 01002

00008 AND NOT LR 6300

00009 OR LD ----

00010 AND 22500

00011 BCNT(67) ----

0001

004

HR 00

00012 LD 00005

00013 TIM 000

0150

00014 LD TIM 000

00015 MOV(21) ----

HR 00

LR 00

00016 LD HR 0015

00017 OUT NOT 00500

00100 00200

DIFU(13) 22500

00500

BCNT(67)

#0001

004

HR 00

MOV(21)

HR 00

LR 00

01001 01002 LR 6300

TIM 000

22500

00002

00005

HR 0015

00000 00001

TIM 000

#0150 15 s

$�%%�� ������� ���������	�� Section 5-5

�4�

If an instruction requires multiple instruction lines (such as KEEP(11)), all of
the lines for the instruction are entered before the right-hand instruction.
Each of the lines for the instruction is coded, starting with LD or LD NOT, to
form ‘logic blocks’ that are combined by the instruction. An example of this
for SFT(10) is shown below.

I

P

R

SFT(10)

HR 00

HR 00

00000 LD 00000

00001 AND 00001
00002 LD 00002

00003 LD 00100
00004 AND NOT 00200

00005 LD 01001
00006 AND NOT 01002

00007 AND NOT LR 6300
00008 OR LD ----

00009 AND 22500
00010 SFT(10) ----

HR 00
HR 00

00011 LD HR 0015

00012 OUT NOT 00500

00100 00200

00500

01001 01002 LR 6300

22500

00002

HR 0015

00000 00001
Address Instruction Operands

5-6 Bit Control Instructions
There are five instructions that can be used generally to control individual bit
status. These are OUT, OUT NOT, DIFU(13), DIFD(14), and KEEP(11).
These instructions are used to turn bits ON and OFF in different ways.

5-6-1 OUTPUT and OUTPUT NOT -- OUT and OUT NOT

B: Bit

IR, SR, AR, HR, TC, LR, TR

Ladder Symbol Operand Data AreasOUTPUT -- OUT

B

B: Bit

IR, SR, AR, HR, TC, LR

Ladder Symbol Operand Data AreasOUTPUT NOT -- OUT NOT

B

Any output bit can generally be used in only one instruction that controls its
status. Refer to 3-3 IR Area for details.

OUT and OUT NOT are used to control the status of the designated bit ac-
cording to the execution condition.

OUT turns ON the designated bit for an ON execution condition, and turns
OFF the designated bit for an OFF execution condition. With a TR bit, OUT
appears at a branching point rather than at the end of an instruction line. Re-
fer to 4-6-7 Branching Instruction Lines for details.

OUT NOT turns ON the designated bit for a OFF execution condition, and
turns OFF the designated bit for an ON execution condition.

Multiple Instruction Lines

Limitations

Description

#�� �	���	
 ���������	�� Section 5-6

�4#

OUT and OUT NOT can be used to control execution by turning ON and OFF
bits that are assigned to conditions on the ladder diagram, thus determining
execution conditions for other instructions. This is particularly helpful and al-
lows a complex set of conditions to be used to control the status of a single
work bit, and then that work bit can be used to control other instructions.

The length of time that a bit is ON or OFF can be controlled by combining the
OUT or OUT NOT with TIM. Refer to Examples under 5-10-1 TIMER -- TIM
for details.

There are no flags affected by these instructions.

5-6-2 DIFFERENTIATE UP and DOWN -- DIFU(13) and DIFD(14)

B: Bit

IR, AR, HR, LR

Ladder Symbols Operand Data Areas

DIFU(13) B

B: Bit

IR, AR, HR, LR
DIFD(14) B

Any output bit can generally be used in only one instruction that controls its
status. Refer to 3-3 IR Area for details.

DIFU(13) and DIFD(14) are used to turn the designated bit ON for one cycle
only.

Whenever executed, DIFU(13) compares its current execution with the previ-
ous execution condition. If the previous execution condition was OFF and the
current one is ON, DIFU(13) will turn ON the designated bit. If the previous
execution condition was ON and the current execution condition is either ON
or OFF, DIFU(13) will either turn the designated bit OFF or leave it OFF (i.e.,
if the designated bit is already OFF). The designated bit will thus never be
ON for longer than one cycle, assuming the instruction is executed each
cycle (see Precautions, below).

Whenever executed, DIFD(14) compares its current execution with the previ-
ous execution condition. If the previous execution condition was ON and the
current one is OFF, DIFD(14) will turn ON the designated bit. If the previous
execution condition was OFF and the current execution condition is either
ON or OFF, DIFD(14) will either turn the designated bit OFF or leave it OFF.
The designated bit will thus never be ON for longer than one cycle, assuming
the instruction is executed each cycle (see Precautions, below).

These instructions are used when differentiated instructions (i.e., those pre-
fixed with an @) are not available and single-cycle execution of a particular
instruction is desired. They can also be used with non-differentiated forms of
instructions that have differentiated forms when their use will simplify pro-
gramming. Examples of these are shown below.

Flags There are no flags affected by these instructions.

Flags

Limitations

Description

#�� �	���	
 ���������	�� Section 5-6

�4'

DIFU(13) and DIFD(14) operation can be uncertain when the instructions are
programmed between IL and ILC, between JMP and JME, or in subroutines.
Refer to 5-7 INTERLOCK and INTERLOCK CLEAR -- IL(02) and ILC(03), 5-8
JUMP and JUMP END -- JMP(04) and JME(05), and 5-18 Subroutines for
details.

In diagram A, below, whenever CMP(20) is executed with an ON execution
condition it will compare the contents of the two operand words (HR 10 and
DM 0000) and set the arithmetic flags (GR, EQ, and LE) accordingly. If the
execution condition remains ON, flag status may be changed each cycle if
the content of one or both operands change. Diagram B, however, is an ex-
ample of how DIFU(13) can be used to ensure that CMP(20) is executed only
once each time the desired execution condition goes ON.

00000

CMP(20)

HR 10

DM 0000Diagram A

22500

CMP(20)

HR 10

DM 0000Diagram B

DIFU(13) 22500

00000

Address Instruction Operands

00000 LD 00000

00001 CMP(20)
HR 10
DM 0000

Address Instruction Operands

00000 LD 00000
00001 DIFU(13) 22500

00002 LD 22500
00003 CMP(20)

HR 10
DM 000

Although a differentiated form of MOV(21) is available, the following diagram
would be very complicated to draw using it because only one of the condi-
tions determining the execution condition for MOV(21) requires differentiated
treatment.

22500

MOV(21)

HR 10

DM 0000

DIFU(13) 22500

00000

00001 00002 00003

00004 00005

Address Instruction Operands

00000 LD 00000

00001 DIFU(13) 22500
00002 LD 22500
00003 LD 00001

00004 AND NOT 00002

00005 AND NOT 00003
00006 OR LD ---
00007 LD 00004

00008 AND NOT 00005

00009 OR LD ---
00010 MOV(21)

HR 10

DM 0000

Precautions

Example 1:
Use When There Are No
Differentiated Instructions

Example 2:
Use to Simplify
Programming

#�� �	���	
 ���������	�� Section 5-6

�4(

5-6-3 KEEP -- KEEP(11)

B: Bit

IR, AR, HR, LR

Ladder Symbol Operand Data Areas
S

R

KEEP(11)

B

Any output bit can generally be used in only one instruction that controls its
status. Refer to 3-3 IR Area for details.

KEEP(11) is used to maintain the status of the designated bit based on two
execution conditions. These execution conditions are labeled S and R. S is
the set input; R, the reset input. KEEP(11) operates like a latching relay that
is set by S and reset by R.

When S turns ON, the designated bit will go ON and stay ON until reset, re-
gardless of whether S stays ON or goes OFF. When R turns ON, the desig-
nated bit will go OFF and stay OFF until set, regardless of whether R stays
ON or goes OFF. The relationship between execution conditions and
KEEP(11) bit status is shown below.

S execution condition

R execution condition

Status of B

The following two diagrams would function identically, though the one using
KEEP(11) requires one less instruction to program and would maintain status
even in an interlocked program section.

00002 00003

00500

00500
Address Instruction Operands

Address Instruction Operands

00000 LD 00002

00001 OR 00500
00002 AND NOT 00003
00003 OUT 00500

00000 LD 00002
00001 LD 00003

00002 KEEP(11) 00500

S

R

KEEP(11)

00500

00002

00003

Flags There are no flags affected by this instruction.

Limitations

Description

#�� �	���	
 ���������	�� Section 5-6

�4�

Never use an input bit in an inverse condition on the reset (R) for KEEP(11)
when the input device uses an AC power supply. The delay in shutting down
the PC’s DC power supply (relative to the AC power supply to the input de-
vice) can cause the designated bit of KEEP(11) to be reset. This situation is
shown below.

A

Input Unit

A
S

R

KEEP(11)

HR 0000
NEVER

Bits used in KEEP are not reset in interlocks. Refer to the 5-7 INTERLOCK
and INTERLOCK CLEAR -- IL(02) and ILC(03) for details.

If a HR bit or an AR bit is used, bit status will be retained even during a
power interruption. KEEP(11) can thus be used to program bits that will main-
tain status after restarting the PC following a power interruption. An example
of this that can be used to produce a warning display following a system
shutdown for an emergency situation is shown below. Bits 00002, 00003, and
00004 would be turned ON to indicate some type of error. Bit 00005 would be
turned ON to reset the warning display. HR 0000, which is turned ON when
any one of the three bits indicates an emergency situation, is used to turn ON
the warning indicator through 00500.

HR 0000

00500

00002

00003

00004

00005
Reset input

Indicates
emergency
situation

Activates
warning
display

Address Instruction Operands

00000 LD 00002
00001 OR 00003

00002 OR 00004
00003 LD 00005

00004 KEEP(11) HR 0000
00005 LD HR 0000

00006 OUT 00500

S

R

KEEP(11)

HR 0000

KEEP(11) can also be combined with TIM to produce delays in turning bits
ON and OFF. Refer to 5-10-1 TIMER -- TIM for details.

Precautions

Example

#�� �	���	
 ���������	�� Section 5-6

�4,

5-7 INTERLOCK and INTERLOCK CLEAR -- IL(02) and ILC(03)

Ladder Symbol IL(02)

Ladder Symbol ILC(03)

IL(02) is always used in conjunction with ILC(03) to create interlocks. Inter-
locks are used to enable branching in the same way as can be achieved with
TR bits, but treatment of instructions between IL(02) and ILC(03) differs from
that with TR bits when the execution condition for IL(02) is OFF. If the execu-
tion condition of IL(02) is ON, the program will be executed as written, with
an ON execution condition used to start each instruction line from the point
where IL(02) is located through the next ILC(03). Refer to 4-6-7 Branching
Instruction Lines for basic descriptions of both methods.

If the execution condition for IL(02) is OFF, the interlocked section between
IL(02) and ILC(03) will be treated as shown in the following table:

Instruction Treatment

OUT and OUT NOT Designated bit turned OFF.

TIM and TIMH(15) Reset.

CNT, CNTR(12) PV maintained.

KEEP(11) Bit status maintained.

DIFU(13) and DIFD(14) Not executed (see below).

All others Not executed.

IL(02) and ILC(03) do not necessarily have to be used in pairs. IL(02) can be
used several times in a row, with each IL(02) creating an interlocked section
through the next ILC(03). ILC(03) cannot be used unless there is at least one
IL(02) between it and any previous ILC(03).

Changes in the execution condition for a DIFU(13) or DIFD(14) are not re-
corded if the DIFU(13) or DIFD(14) is in an interlocked section and the exe-
cution condition for the IL(02) is OFF. When DIFU(13) or DIFD(14) is execu-
tion in an interlocked section immediately after the execution condition for the
IL(02) has gone ON, the execution condition for the DIFU(13) or DIFD(14)
will be compared to the execution condition that existed before the interlock
became effective (i.e., before the interlock condition for IL(02) went OFF).
The ladder diagram and bit status changes for this are shown below. The

Description

DIFU(13) and DIFD(14) in
Interlocks

�,�)�$
�- ��% �,�)�$
�- �$)�� .. �$�/0 ��% �$�/1 Section 5-7

�4"

interlock is in effect while 00000 is OFF. Notice that 01000 is not turned ON
at the point labeled A even though 00001 has turned OFF and then back ON.

00000

IL(02)

DIFU(13) 01000

ILC(03)

00001

00000

00001

ON

OFF

ON

OFF

01000
ON

OFF

A

Address Instruction Operands

00000 LD 00000
00001 IL(02)

00002 LD 00001
00003 DIFU(13) 01000

00004 ILC(03)

There must be an ILC(03) following any one or more IL(02).

Although as many IL(02) instructions as are necessary can be used with one
ILC(03), ILC(03) instructions cannot be used consecutively without at least
one IL(02) in between, i.e., nesting is not possible. Whenever a ILC(03) is
executed, all interlocks between the active ILC(03) and the preceding
ILC(03) are cleared.

When more than one IL(02) is used with a single ILC(03), an error message
will appear when the program check is performed, but execution will proceed
normally.

Flags There are no flags affected by these instructions.

The following diagram shows IL(02) being used twice with one ILC(03).

00000

00001

ILC(03)

IL(02)

00004

00005

00003

00002

IL(02)

00502

CP

R

CNT 001

IR 010
00100

Address Instruction Operands

00000 LD 00000
00001 IL(02)

00002 LD 00001
00003 TIM 511

0015
00004 LD 00002

00005 IL(02)
00006 LD 00003
00007 AND NOT 00004

00008 LD 00100

00009 CNT 001
010

00010 LD 00005

00011 OUT 00502

00012 ILC(03)

TIM 511

#0015 1.5 s

When the execution condition for the first IL(02) is OFF, TIM 511 will be reset
to 1.5 s, CNT 001 will not be changed, and 00502 will be turned OFF. When
the execution condition for the first IL(02) is ON and the execution condition
for the second IL(02) is OFF, TIM 511 will be executed according to the
status of 00001, CNT 001 will not be changed, and 00502 will be turned OFF.

Precautions

Example

�,�)�$
�- ��% �,�)�$
�- �$)�� .. �$�/0 ��% �$�/1 Section 5-7

��4

When the execution conditions for both the IL(02) are ON, the program will
execute as written.

5-8 JUMP and JUMP END -- JMP(04) and JME(05)

N: Jump number

(00 to 49)

Ladder Symbols Definer Values

JMP(04) N

N: Jump number

(00 to 49)
JME(05) N

Jump numbers 01 through 49 may be used only once in JMP(04) and once in
JME(05), i.e., each can be used to define one jump only. Jump number 00
can be used as many times as desired.

JMP(04) is always used in conjunction with JME(05) to create jumps, i.e., to
skip from one point in a ladder diagram to another point. JMP(04) defines the
point from which the jump will be made; JME(05) defines the destination of
the jump. When the execution condition for JMP(04) in ON, no jump is made
and the program is executed consecutively as written. When the execution
condition for JMP(04) is OFF, a jump is made to the JME(05) with the same
jump number and the instruction following JME(05) is executed next.

If the jump number for JMP(04) is between 01 and 49, jumps, when made,
will go immediately to JME(05) with the same jump number without executing
any instructions in between. The status of timers, counters, bits used in OUT,
bits used in OUT NOT, and all other status controlled by the instructions be-
tween JMP(04) and JMP(05) will not be changed. Each of these jump num-
bers can be used to define only one jump. Because all of instructions be-
tween JMP(04) and JME(05) are skipped, jump numbers 01 through 49 can
be used to reduce cycle time.

If the jump number for JMP(04) is 00, the CPU will look for the next JME(05)
with a jump number of 00. To do so, it must search through the program,
causing a longer cycle time (when the execution condition is OFF) than for
other jumps. The status of timers, counters, bits used in OUT, bits used in
OUT NOT, and all other status controlled by the instructions between
JMP(04) 00 and JMP(05) 00 will not be changed. Jump number 00 can be
used as many times as desired. A jump from JMP(04) 00 will always go to
the next JME(05) 00 in the program. It is thus possible to use JMP(04) 00
consecutively and match them all with the same JME(05) 00. It makes no
sense, however, to use JME(05) 00 consecutively, because all jumps made
to them will end at the first JME(05) 00.

Although DIFU(13) and DIFD(14) are designed to turn ON the designated bit
for one cycle, they will not necessarily do so when written between JMP(04)
and JMP (05). Once either DIFU(13) or DIFD(14) has turned ON a bit, it will
remain ON until the next time DIFU(13) or DIFD(14) is executed again. In
normal programming, this means the next cycle. In a jump, this means the
next time the jump from JMP(04) to JME(05) is not made, i.e., if a bit is
turned ON by DIFU(13) or DIFD(14) and then a jump is made in the next

Limitations

Description

DIFU(13) and DIFD(14) in
Jumps

23�� ��% 23��),� .. 2���/4 ��% 2�)�/5 Section 5-8

���

cycle so that DIFU(13) or DIFD(14) are skipped, the designated bit will re-
main ON until the next time the execution condition for the JMP(04) control-
ling the jump is ON.

When JMP(04) and JME(05) are not used in pairs, an error message will ap-
pear when the program check is performed. Although this message also ap-
pears if JMP(04) 00 and JME(05) 00 are not used in pairs, the program will
execute properly as written.

Flags There are no flags affected by these instructions.

Examples of jump programs are provided in 4-6-8 Jumps.

5-9 END -- END(01)

Ladder Symbol END(01)

END(01) is required as the last instruction in any program. If there are sub-
routines, END(01) is placed after the last subroutine. No instruction written
after END(01) will be executed. END(01) can be placed anywhere in the pro-
gram to execute all instructions up to that point, as is sometimes done to de-
bug a program, but it must be removed to execute the remainder of the pro-
gram.

If there is no END(01) in the program, no instructions will be executed and
the error message “NO END INST” will appear.

Flags END(01) turns OFF the ER, CY, GR, EQ, and LE flags.

5-10 Timer and Counter Instructions
TIM and TIMH are decrementing ON-delay timer instructions which require a
TC number and a set value (SV).

CNT is a decrementing counter instruction and CNTR is a reversible counter
instruction. Both require a TC number and a SV. Both are also connected to
multiple instruction lines which serve as an input signal(s) and a reset.

Any one TC number cannot be defined twice, i.e., once it has been used as
the definer in any of the timer or counter instructions, it cannot be used
again. Once defined, TC numbers can be used as many times as required as
operands in instructions other than timer and counter instructions.

TC numbers run from 000 through 511. No prefix is required when using a
TC number as a definer in a timer or counter instruction. Once defined as a
timer, a TC number can be prefixed with TIM for use as an operand in certain
instructions. The TIM prefix is used regardless of the timer instruction that
was used to define the timer. Once defined as a counter, a TC number can
be prefixed with CNT for use as an operand in certain instructions. The CNT
is also used regardless of the counter instruction that was used to define the
counter.

TC numbers can be designated as operands that require either bit or word
data. When designated as an operand that requires bit data, the TC number
accesses a bit that functions as a “completion flag” that indicates when the
time/count has expired, i.e., the bit, which is normally OFF, will turn ON when
the designated SV has expired. When designated as an operand that re-

Precautions

Examples

Description

����� ��% �	����� ���������	�� Section 5-10

���

quires word data, the TC number accesses a memory location that holds the
present value (PV) of the timer or counter. The PV of a timer or counter can
thus be used as an operand in CMP(20), or any other instruction for which
the TC area is allowed. This is done by designating the TC number used to
define that timer or counter to access the memory location that holds the PV.

Note that “TIM 000” is used to designate the TIMER instruction defined with
TC number 000, to designate the completion flag for this timer, and to desig-
nate the PV of this timer. The meaning of the term in context should be clear,
i.e., the first is always an instruction, the second is always a bit operand, and
the third is always a word operand. The same is true of all other TC numbers
prefixed with TIM or CNT.

An SV can be input as a constant or as a word address in a data area. If an
IR area word assigned to an Input Unit is designated as the word address,
the Input Unit can be wired so that the SV can be set externally through
thumbwheel switches or similar devices. Timers and counters wired in this
way can only be set externally during RUN or MONITOR mode. All SVs, in-
cluding those set externally, must be in BCD.

5-10-1 TIMER -- TIM

N: TC number

(000 through 511)

Ladder Symbol

Definer Values

SV: Set value (word, BCD)

IR, AR, DM, HR, LR, #

Operand Data Areas
TIM N

SV

SV is between 000.1 and 999.9. The decimal point is not entered.

Each TC number can be used as the definer in only one TIMER or
COUNTER instruction.

TC 000 through TC 003 should not be used in TIM if they are required for
TIMH(15). Refer to 5-10-2 HIGH-SPEED TIMER -- TIMH(15) for details.

A timer is activated when its execution condition goes ON and is reset (to
SV) when the execution condition goes OFF. Once activated, TIM measures
in units of 0.1 second from the SV. TIM accuracy is +0.0/--0.1 second.

If the execution condition remains ON long enough for TIM to time down to
zero, the completion flag for the TC number used will turn ON and will remain
ON until TIM is reset (i.e., until its execution condition is goes OFF).

The following figure illustrates the relationship between the execution condi-
tion for TIM and the completion flag assigned to it.

Execution condition

Completion flag

ON

OFF

ON

OFF

SV SV

Limitations

Description

����� ��% �	����� ���������	�� Section 5-10

���

Timers in interlocked program sections are reset when the execution condi-
tion for IL(02) is OFF. Power interruptions also reset timers. If a timer that is
not reset under these conditions is desired, SR area clock pulse bits can be
counted to produce timers using CNT. Refer to 5-10-3 COUNTER -- CNT for
details.

Program execution will continue even if a non-BCD SV is used, but timing will
not be accurate.

Flags ER: SV is not in BCD.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

All of the following examples use OUT in diagrams that would generally be
used to control output bits in the IR area. There is no reason, however, why
these diagrams cannot be modified to control execution of other instructions.

The following example shows two timers, one set with a constant and one set
via input word 005. Here, 00200 will be turned ON after 00000 goes ON and
stays ON for at least 15 seconds. When 00000 goes OFF, the timer will be
reset and 00200 will be turned OFF. When 00001 goes ON, TIM 001 is
started from the SV provided through IR word 005. Bit 00201 is also turned
ON when 00001 goes ON. When the SV in 005 has expired, 00201 is turned
OFF. This bit will also be turned OFF when TIM 001 is reset, regardless of
whether or not SV has expired.

00000

TIM 000

00001

TIM 001

00200

00201

015.0 s

IR 005

TIM 000

#0150

TIM 001

005

Address Instruction Operands

00000 LD 00000
00001 TIM 000

0150
00002 LD TIM 000

00003 OUT 00200
00004 LD 00001

00005 TIM 001
005

00006 AND NOT TIM 001

00007 OUT 00201

There are two ways to achieve timers that operate for longer than 999.9 sec-
onds. One method is to program consecutive timers, with the Completion
Flag of each timer used to activate the next timer. A simple example with two
900.0-second (15-minute) timers combined to functionally form a 30-minute
timer.

00000

TIM 001

TIM 002

00200

Address Instruction Operands

00000 LD 00000

00001 TIM 001
9000

00002 LD TIM 001
00003 TIM 002

9000
00004 LD TIM 002

00005 OUT 00200

TIM 001

#9000

TIM 002

#9000

900.0 s

900.0 s

Precautions

Examples

Example 1:
Basic Application

Example 2:
Extended Timers

����� ��% �	����� ���������	�� Section 5-10

��#

In this example, 00200 will be turned ON 30 minutes after 00000 goes ON.

TIM can also be combined with CNT or CNT can be used to count SR area
clock pulse bits to produce longer timers. An example is provided in 5-10-3
COUNTER -- CNT.

TIM can be combined with KEEP(11) to delay turning a bit ON and OFF in
reference to a desired execution condition. KEEP(11) is described in 5-6-3
KEEP -- KEEP(11).

To create delays, the Completion Flags for two TIM are used to determine
the execution conditions for setting and reset the bit designated for
KEEP(11). The bit whose manipulation is to be delayed is used in KEEP(11).
Turning ON and OFF the bit designated for KEEP(11) is thus delayed by the
SV for the two TIM. The two SV could naturally be the same if desired.

In the following example, 00500 would be turned ON 5.0 seconds after
00000 goes ON and then turned OFF 3.0 seconds after 00000 goes OFF. It
is necessary to use both 00500 and 00000 to determine the execution condi-
tion for TIM 002; 00000 in an normally closed condition is necessary to reset
TIM 002 when 00000 goes ON and 00500 is necessary to activate TIM 002
(when 00000 is OFF).

00000

00500 00000

TIM 001

TIM 002

00000

00500

5.0 s 3.0 s

Address Instruction Operands

00000 LD 00000

00001 TIM 001
0050

00002 LD 00500

00003 AND NOT 00000

00004 TIM 002
0030

00005 LD TIM 001

00006 LD TIM 002

00007 KEEP(11) 00500

TIM 001

0050

TIM 002

0030

S

R

KEEP(11)

00500

5.0 s

3.0 s

The length of time that a bit is kept ON or OFF can be controlled by combin-
ing TIM with OUT or OUT NO. The following diagram demonstrates how this
is possible. In this example, 00204 would remain ON for 1.5 seconds after
00000 goes ON regardless of the time 00000 stays ON. This is achieved by
using 01000 as a self-maintaining bit activated by 00000 and turning ON
00204 through it. When TIM 001 comes ON (i.e., when the SV of TIM 001
has expired), 00204 will be turned OFF through TIM 001 (i.e., TIM 001 will

Example 3:
ON/OFF Delays

Example 4:
One-Shot Bits

����� ��% �	����� ���������	�� Section 5-10

��'

turn ON which, as an inverse condition, creates an OFF execution condition
for OUT 00204).

00000

TIM 00101000

01000

01000 TIM 001

01000

00204

00000

00204

1.5 s 1.5 s

Address Instruction Operands

00000 LD 01000
00001 AND NOT TIM 001

00002 OR 00000
00003 OUT 01000

00004 LD 01000
00005 TIM 001

0015
00006 LD 01000
00007 AND NOT TIM 001

00008 OUT 00204

TIM 001

#0015 1.5 s

Bits can be programmed to turn ON and OFF at regular intervals while a des-
ignated execution condition is ON by using TIM twice. One TIM functions to
turn ON and OFF a specified bit, i.e., the completion flag of this TIM turns the
specified bit ON and OFF. The other TIM functions to control the operation of
the first TIM, i.e., when the first TIM’s completion flag goes ON, the second
TIM is started and when the second TIM’s completion flag goes ON, the first
TIM is started.

00000 TIM 002

TIM 001

TIM 001
00205

00000

00205

1.5 s1.0 s 1.5 s1.0 s

Address Instruction Operands

00000 LD 00000
00001 AND TIM 002
00002 TIM 001

0010

00003 LD TIM 001
00004 TIM 002

0015

00005 LD TIM 001
00006 OUT 00205

TIM 002

#0015

TIM 001

#0010 1.0 s

1.5 s

A simpler but less flexible method of creating a flicker bit is to AND one of the
SR area clock pulse bits with the execution condition that is to be ON when
the flicker bit is operating. Although this method does not use TIM, it is in-
cluded here for comparison. This method is more limited because the ON
and OFF times must be the same and they depend on the clock pulse bits
available in the SR area.

In the following example the 1-second clock pulse is used (25502) so that
00206 would be turned ON and OFF every second, i.e., it would be ON for

Example 5:
Flicker Bits

����� ��% �	����� ���������	�� Section 5-10

��(

0.5 seconds and OFF for 0.5 seconds. Precise timing and the initial status of
00206 would depend on the status of the clock pulse when 00000 goes ON.

00000 25502
00206

Address Instruction Operands

00000 LD 00000
00001 AND 25502
00002 OUT 00206

5-10-2 HIGH-SPEED TIMER -- TIMH(15)

N: TC number

(000 through 511, but 000
through 003 preferred)

Ladder Symbol

Definer Values

SV: Set value (word, BCD)

IR, AR, DM, HR, LR, #

Operand Data Areas
TIMH(15) N

SV

SV is between 00.02 and 99.99. (Although 00.00 and 00.01 may be set,
00.00 will disable the timer, i.e., turn ON the Completion Flag immediately,
and 00.01 is not reliably cycled.) The decimal point is not entered.

Each TC number can be used as the definer in only one timer or counter in-
struction.

TC 000 through TC 003 must be used to ensure adequate accuracy if the
cycle time is greater than 10 ms.

TIMH(15) operates in the same way as TIM except that TIMH measures in
units of 0.01 second.

Refer to 5-10-1 TIMER -- TIM for operational details and examples. Except
for the above, and all aspects of operation are the same.

Timers in interlocked program sections are reset when the execution condi-
tion for IL(02) is OFF. Power interruptions also reset timers. If a timer that is
not reset under these conditions is desired, SR area clock pulse bits can be
counted to produce timers using CNT. Refer to 5-10-3 COUNTER -- CNT for
details.

The cycle time affects TIMH(15) accuracy if TC 004 through TC 511 are
used. If the cycle time is greater than 10 ms, use TC 000 through TC 003.

Program execution will continue even if a non-BCD SV is used, but timing will
not be accurate.

Flags ER: SV is not in BCD.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

Limitations

Description

Precautions

����� ��% �	����� ���������	�� Section 5-10

���

5-10-3 COUNTER -- CNT

N: TC number

(000 through 511)

Ladder Symbol

Definer Values

SV: Set value (word, BCD)

IR, AR, DM, HR, LR, #

Operand Data Areas

CP

R

CNT N

SV

Each TC number can be used as the definer in only one TIMER or COUNT-
ER instruction.

CNT is used to count down from SV when the execution condition on the
count pulse, CP, goes from OFF to ON, i.e., the present value (PV) will be
decremented by one whenever CNT is executed with an ON execution condi-
tion for CP and the execution condition was OFF for the last execution. If the
execution condition has not changed or has changed from ON to OFF, the
PV of CNT will not be changed. The completion flag for a counter is turned
ON when the PV reaches zero and will remain ON until the counter is reset.

CNT is reset with a reset input, R. When R goes from OFF to ON, the PV is
reset to SV. The PV will not be decremented while R is ON. Counting down
from SV will begin again when R goes OFF. The PV for CNT will not be reset
in interlocked program sections or by power interruptions.

Changes in execution conditions, the completion flag, and the PV are illus-
trated below. PV line height is meant only to indicate changes in the PV.

Execution condition
on count pulse (CP)

Execution condition
on reset (R)

ON

OFF

ON

OFF

Completion flag
ON

OFF

PV
SV

SV -- 1

SV -- 2

0002

0001

0000

SV

Program execution will continue if a non-BCD SV is used, but the SV might
not be correct.

Flags ER: SV is not in BCD.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

Limitations

Description

Precautions

����� ��% �	����� ���������	�� Section 5-10

��,

In the following example, the PV will be decremented whenever both 00000
and 00001 are ON provided that 00002 is OFF and either 00000 or 00001
was OFF the last time CNT 004 was executed. When 150 pulses have been
counted down (i.e., when PV reaches zero), 00205 will be turned ON.

00000
CP

R

CNT 004

#0150
00002

00001

00205

CNT 004

Address Instruction Operands

00000 LD 00000
00001 AND 00001

00002 LD 00002
00003 CNT 0004

0150
00004 LD CNT 004

00005 OUT 00205

Here, 00000 can be used to control when CNT is operative and 00001 can
be used as the bit whose OFF to ON changes are being counted.

The above CNT can be modified to restart from SV each time power is
turned ON to the PC. This is done by using the First Cycle Flag in the SR
area (25315) to reset CNT as shown below.

00000
CP

R

CNT 004

#0150
00002

00001

00205

CNT 004

25315

Address Instruction Operands

00000 LD 00000

00001 AND 00001
00002 LD 00002

00003 OR 25315
00004 CNT 004

0150
00005 LD CNT 004

00006 OUT 00205

Counters that can count past 9,999 can be programmed by using one CNT to
count the number of times another CNT has counted to zero from SV.

In the following example, 00000 is used to control when CNT 001 operates.
CNT 001, when 00000 is ON, counts down the number of OFF to ON
changes in 00001. CNT 001 is reset by its completion flag, i.e., it starts
counting again as soon as its PV reaches zero. CNT 002 counts the number
of times the completion flag for CNT 001 goes ON. Bit 00002 serves as a
reset for the entire extended counter, resetting both CNT 001 and CNT 002
when it is OFF. The completion flag for CNT 002 is also used to reset CNT
001 to inhibit CNT 001 operation, once SV for CNT 002 has been reached,
until the entire extended counter is reset via 00002.

Because in this example the SV for CNT 001 is 100 and the SV for CNT 002
is 200, the completion flag for CNT 002 turns ON when 100 x 200 or 20,000

Example 1:
Basic Application

Example 2:
Extended Counter

����� ��% �	����� ���������	�� Section 5-10

��"

OFF to ON changes have been counted in 00001. This would result in 00203
being turned ON.

00203

CP

R

CNT 001

#0100

CP

R

CNT 002

#0200

CNT 001

00002

CNT 002

00000 00001

00002

CNT 001

CNT 002

Address Instruction Operands

00000 LD 00000
00001 AND 00001
00002 LD NOT 00002

00003 OR CNT 001

00004 OR CNT 002
00005 CNT 001

0100

00006 LD CNT 001
00007 LD NOT 00002

00008 CNT 002
0200

00009 LD CNT 002
00010 OUT 00203

CNT can be used in sequence as many times as required to produce count-
ers capable of counting any desired values.

CNT can be used to create extended timers in two ways: by combining TIM
with CNT and by counting SR area clock pulse bits.

In the following example, CNT 002 counts the number of times TIM 001
reaches zero from its SV. The completion flag for TIM 001 is used to reset
TIM 001 so that is runs continuously and CNT 002 counts the number of
times the completion flag for TIM 001 goes ON (CNT 002 would be executed
once each time between when the completion flag for TIM 001 goes ON and
TIM 001 is reset by its completion flag). TIM 001 is also reset by the comple-
tion flag for CNT 002 so that the extended timer would not start again until
CNT 002 was reset by 00001, which serves as the reset for the entire ex-
tended timer.
Because in this example the SV for TIM 001 is 5.0 seconds and the SV for
CNT 002 is 100, the completion flag for CNT 002 turns ON when 5 seconds x
100 times, i.e., 500 seconds (or 8 minutes and 20 seconds) have expired.
This would result in 00201 being turned ON.

00000 TIM 001 CNT 002

TIM 001

00001

CNT 002

00200

CP

R

CNT
002

#0100

Address Instruction Operands

00000 LD 00000

00001 AND NOT TIM 001
00002 AND NOT CNT 002
00003 TIM 001

0050

00004 LD TIM 001
00005 LD 00001
00006 CNT 002

0100

00007 LD CNT 002
00008 OUT 00200

TIM 001

#0050

In the following example, CNT 001 counts the number of times the 1-second
clock pulse bit (25502) goes from OFF to ON. Here again, 00000 is used to
control the times when CNT is operating.

Example 3:
Extended Timers

����� ��% �	����� ���������	�� Section 5-10

��4

Because in this example the SV for CNT 001 is 700, the completion flag for
CNT 002 turns ON when 1 second x 700 times, or 11 minutes and 40 sec-
onds have expired. This would result in 00202 being turned ON.

CP

R

CNT
001

#0700

00000 25502

00001

CNT 001
00202

Address Instruction Operands

00000 LD 00000
00001 AND 25502

00002 LD NOT 00001
00003 CNT 001

0700
00004 LD CNT 001

00005 OUT 00202

Caution The shorter clock pulses will not necessarily produce accurate timers be-
cause their short ON times might not be read accurately during longer cycles.
In particular, the 0.02-second and 0.1-second clock pulses should not be
used to create timers with CNT instructions.

5-10-4 REVERSIBLE COUNTER -- CNTR(12)

N: TC number

(000 through 511)

Ladder Symbol

Definer Values

SV: Set value (word, BCD)

IR, AR, DM, HR, LR, #

Operand Data Areas

II

DI
CNTR(12)

N

SVR

Each TC number can be used as the definer in only one timer or counter in-
struction.

The CNTR(12) is a reversible, up/down circular counter, i.e., it is used to
count between zero and SV according to changes in two execution condi-
tions, those in the increment input (II) and those in the decrement input (DI).

The present value (PV) will be incremented by one whenever CNTR(12) is
executed with an ON execution condition for II and the last execution condi-
tion for II was OFF. The present value (PV) will be decremented by one
whenever CNTR(12) is executed with an ON execution condition for DI and
the last execution condition for DI was OFF. If OFF to ON changes have oc-
curred in both II and DI since the last execution, the PV will not be changed.

If the execution conditions have not changed or have changed from ON to
OFF for both II and DI, the PV of CNT will not be changed.

When decremented from 0000, the present value is set to SV and the com-
pletion flag is turned ON until the PV is decremented again. When incre-
mented past the SV, the PV is set to 0000 and the completion flag is turned
ON until the PV is incremented again.

CNTR(12) is reset with a reset input, R. When R goes from OFF to ON, the
PV is reset to zero. The PV will not be incremented or decremented while R

Limitations

Description

����� ��% �	����� ���������	�� Section 5-10

���

is ON. Counting will begin again when R goes OFF. The PV for CNTR(12)
will not be reset in interlocked program sections or by the effects of power
interruptions.

Changes in II and DI execution conditions, the completion flag, and the PV
are illustrated below starting from part way through CNTR(12) operation (i.e.,
when reset, counting begins from zero). PV line height is meant to indicate
changes in the PV only.

Execution condition
on increment (II)

Execution condition
on decrement (DI)

ON

OFF

ON

OFF

Completion flag
ON

OFF

PV
SV

SV -- 1

SV -- 2
0001

0000 0000

SV

SV -- 1

SV -- 2

Program execution will continue even if a non-BCD SV is used, but the SV
will not be correct.

Flags ER: SV is not in BCD.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

5-10-5 REVERSIBLE DRUM COUNTER -- RDM(60)

N: TC number

TC (TC 500 to TC 511)

T: Beginning table word (BCD)

IR, AR, DM, HR, TC, LR

Ladder Symbol

Operand Data Areas

R: Beginning result word

IR, AR, DM, HR, TC, LR

RDM(60)

N

T

R

Limitations TC 500 through TC 511 must be used to create a reversible counter. The
table starting in T must be within the same data area and all table words from
T+1 on must be in BCD. Set this data carefully; the Error Flag (SR 25503)
will not detect non-BCD data.

Description RDM(60) is used to create a reversible ring counter that counts from 0 to
9999, compare the PV to a table of ranges, and turn ON corresponding bits
in R whenever the PV is within a range in the table. The counter input is the
execution condition of RDM(60). Inputs are counted on the rising edge.

The size of the table is determined by the value of n contained in bits 00 to
07 of T. n is one less than the number of ranges in the table and can be any-
where from 0 to 255, designating from 1 to 256 ranges. The actual table of

Precautions

����� ��% �	����� ���������	�� Section 5-10

���

ranges begin in T+1. Each range is determined by the BCD values in consec-
utive word pairs, with each pair beginning with T+1. Ranges should be set so
that the first value is less than the second unless the range includes zero,
e.g., if the range includes 9998, 9999, 0000, 0001, and 0002, the first value
should be set to 9998; the second value to 0002.

When the counter value is found to lie within the first range, the first bit in R,
bit 00, will be turned ON; if the counter value is within the second range, bit
01 will be turned ON. Results for more than the first 16 ranges are placed in
consecutive result words from R+1 on. The correspondence between table
words and result words is shown below.

First word Second word Result bit

T+1 T+2 00 of R

T+3 T+4 01 of R

T+5 T+6 02 of R

T+7 T+8 03 of R

T+9 T+10 04 of R

T+11 T+12 05 of R

T+13 T+14 06 of R

T+15 T+16 07 of R

T+17 T+18 08 of R

T+19 T+20 09 of R

T+21 T+22 10 of R

T+23 T+24 11 of R

T+25 T+26 12 of R

T+27 T+28 13 of R

T+29 T+30 14 of R

T+31 T+32 15 of R

T+33 T+34 00 of R+1

T+35 T+36 01 of R+1

T+37 T+38 02 of R+1

etc. etc. etc.

T+2n+1 T+2n+2 See below.

The last bit required for the result will be the truncated integer quotient of
(n--1)/15, with one less than the remainder being the bit number of the last
required bit.

Result words are updated according to the present value of the counter re-
gardless of whether or not the Reset Bit (see below) is ON, i.e., then the Re-
set Bit is ON, the results words will be updated according to a present value
of zero.

Table values can be changed during counter operation. Operation will contin-
ue according to the new values.

����� ��% �	����� ���������	�� Section 5-10

���

The direction of the counter and resetting the counter are designated via AR
bits. Each of the eleven possible counters has a dedicated Reset Bit and
Counter Direction Bit. The Reset Bits are contained in AR 0200 to AR 0210;
the Counter Direction Bits, in AR 0300 to AR 0310. These correspond to the
TC numbers as follows:

TC number Reset Bit Counter Direction Bit

CNT 500 AR 0200 AR 0300

CNT 501 AR 0201 AR 0301

CNT 502 AR 0202 AR 0302

CNT 503 AR 0203 AR 0303

CNT 504 AR 0204 AR 0304

CNT 505 AR 0205 AR 0305

CNT 506 AR 0206 AR 0306

CNT 507 AR 0207 AR 0307

CNT 508 AR 0208 AR 0308

CNT 509 AR 0209 AR 0309

CNT 510 AR 0210 AR 0310

When the corresponding Reset Bit is ON, the counter will be reset to zero
and will not operate until the Reset Bit goes OFF. When the corresponding
Counter Direction Bit is ON, the counter will count down; when the Counter
Direction Bit is OFF, the counter will count up.

Flags ER: T, T+1, and T+2 are not within the same data area.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

Example The following example shows the minimal programming required to use
RDM(60). Both the Reset Bit and the Counter Direction Bit are control via
input bits, i.e., IR 00100 and IR 00101. The table values and result word sta-
tus for a PC of 0001 are shown. It is assumed that IR 00100 would be turned
ON to reset the counter at 2,400 counts.

AR 0200

AR 0300

00100

00101

RDM(60)

CNT 500

DM 1000

128

00102

Address Instruction Operands

00000 LD 00100

00001 OUT AR 0200
00002 LD 00101

00003 OUT AR 0300
00004 LD 00102

00005 RDM(60) ---
CNT 500

DM 1000
128

����� ��% �	����� ���������	�� Section 5-10

��#

0 0 0 1 0 0 0 22 3 9 8 12800 1

T+1 = DM 1001 T+2 = DM 1002

0 1 0 20 0 9 8 12801 0

T+3 = DM 1003 T+4 = DM 1004

0 2 0 20 1 9 8 12801 0

T+5 = DM 1005 T+6 = DM 1006

1 5 0 21 4 9 8 12815 0

T+31 = DM 1031 T+21 = DM 1032

1 6 0 21 5 9 8 12900 0

T+33 = DM 1033 T+34 = DM 1034

1 7 0 21 6 9 8 12901 0

T+35 = DM 1035 T+36 = DM 1036

1 8 0 21 7 9 8 12902 0

T+37 = DM 1037 T+38 = DM 1038

2 3 0 22 2 9 8 12907 0

T+47 = DM 1047 T+48 = DM 1048

N = CNT 500

T = DM 1000

R = IR 128
0 0 1 7

(n = 23, i.e.,
24 ranges)

The following timing chart shows counter operation for a limited range of
PVs. Although only IR 12800 is shown because it is the only result bit af-
fected by the PVs shown, the other bits in result words would operate the
same for PVs that lie within the corresponding table ranges.

AR 0200 (reset)

2398 2399 0000 0001 0002 0003 0004 0005 0004 0003 0002 0001 0000

AR 0300 (direction)

IR 00102 (count input)

IR 12800 (1st result bit)

PV of CNT 500

5-10-6 HIGH-SPEED COUNTER -- HDM(61)

T: Beginning table word (BCD)

IR, AR, DM, HR, TC, LR

R: Beginning result word

IR, AR, DM, HR, TC, LR

Ladder Symbol

Operand Data Areas

---: Not used.

HDM(61)

T

R

Limitations The table starting in T must be within the same data area and all table words
from T+1 on must be in BCD. Set this data carefully; the Error Flag (SR

����� ��% �	����� ���������	�� Section 5-10

��'

25503) will not detect non-BCD data. Ensure that the system parameters
have been set to enable the High-speed Counter. See the table in 3-6 DM
(Data Memory) Area.

Description HDM(61) is used to compare the PV of the high-speed counter (CNT 511) to
a table of ranges, and turn ON corresponding bits in R whenever the PV is
within a range in the table.

The size of the table is determined by the value of n contained in bits 00 to
07 of T. The value of n is one less than the number of ranges in the table and
can be between 0 and 255, designating from 1 to 256 ranges. The actual
table of ranges begin in T+1. Each range is determined by the BCD values in
consecutive word pairs, with each pair beginning with T+1. Ranges should be
set so that the first value is less than the second unless the range includes
zero, e.g., if the range includes 9998, 9999, 0000, 0001, and 0002, the first
value should be set to 9998; the second value to 0002.
When the counter value is found to lie within the first range, the first bit in R,
bit 00, will be turned ON; if the counter value is within the second range, bit
01 will be turned ON; and so on. Results for more than the first 16 ranges are
placed in consecutive result words from R+1 on. The correspondence be-
tween table words and result words is shown below.

First word Second word Result bit

T+1 T+2 00 of R

T+3 T+4 01 of R

T+5 T+6 02 of R

T+7 T+8 03 of R

T+9 T+10 04 of R

T+11 T+12 05 of R

T+13 T+14 06 of R

T+15 T+16 07 of R

T+17 T+18 08 of R

T+19 T+20 09 of R

T+21 T+22 10 of R

T+23 T+24 11 of R

T+25 T+26 12 of R

T+27 T+28 13 of R

T+29 T+30 14 of R

T+31 T+32 15 of R

T+33 T+34 00 of R+1

T+35 T+36 01 of R+1

T+37 T+38 02 of R+1

etc. etc. etc.

T+2n+1 T+2n+2 See below.

The last bit required for the result will be the truncated integer quotient of
(n--1)/15, with one less than the remainder being the bit number of the last
required bit.
Result words are updated according to the present value of the counter re-
gardless of whether or not the High-speed Counter Reset/Disable Bit is ON,
i.e., then the Reset/Disable Bit is ON, the result words will be updated ac-
cording to a present value of zero. If the Reset/Disable Bit is ON, the high-
speed counter is reset when END(01) is executed.
Although result words will be updated only when HDM(61) is executed with
an ON execution condition, the execution condition for HDM(61) does not
affect the operation of the high-speed counter.

����� ��% �	����� ���������	�� Section 5-10

��(

Table values can be change during counter operation. Operation will continue
according to the new values.

Flags ER: T, T+1, and T+2 are not within the same data area.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

Example 1 The following example shows the programming required to used HDM(61).
Both the Reset Bit and the Counter Direction Bit are control via input bits, i.e.,
IR 00100 and IR 00101. The table values and result word status for a PC of
0001 are shown. It is assumed that IR 00100 would be turned ON to reset
the counter at 2,400 counts.

AR 0211

00101

HDM(61)

DM 1000

002

00100

High-speed
Counter
Reset Bit

Address Instruction Operands

00000 LD 00101
00001 OUT AR 0211
00002 LD 00100

00003 HDM(61) ---

DM 1000
002

0 0 0 1 0 0 0 20 1 9 8 00200 1
T+1 = DM 1001 T+2 = DM 1002

0 0 5 20 0 4 8 00201 0
T+3 = DM 1003 T+4 = DM 1004

0 1 0 20 0 9 8 00201 0
T+5 = DM 1005 T+6 = DM 1006

0 1 5 20 1 4 8 00203 0
T+7 = DM
1007

T+8 = DM 1008

CNT 511

T = DM 1000

R = IR 002
0 0 0 3

(n = 3, i.e.,
4 ranges)

The following timing chart shows counter operation for a limited range of
PVs. Although only IR 12800 is shown because it is the only result bit

����� ��% �	����� ���������	�� Section 5-10

���

affected by the PVs shown, the other bits in result words would operated the
same for PVs that lie within the corresponding table ranges.

PV of CNT 511

Completion flag of CNT 511

IR 00001 (reset/disable)

IR 00000 (count input)

IR 00101 (reset input)

AR 0211 (reset bit)

Counter enabled (IR 00100
refreshed)

IR 00200 (interrupt output,
terminal refreshed)

*The above timing chart does not take I/O circuit delays into consideration.

0000 0001 0002 0003 0004 0198 0199 0000 0001 0002

PC cycle

Example 2 The following example shows how to program a high-speed counter that counts
past 9,999. In this particular example, a comparison table to 35,000 is created to
detect a range from 23,000 to 25,000 counts.

DM Area Settings
The General High-speed Counter Bit settings in the DM area (DM0905) are as
follows:

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 09 Bit 08 Bits 00 to 07

1 0 or 1 0 0 0 0 1 1 0 or 1

Turning ON bit 15 enables the counter, and the above settings for bits 08 to 10
set steps 0 to 3 (0 to 40,000) for bank 0.

Step Table Settings
The settings for the step table are as follows:

Word Contents

DM 0910 0000

DM 0911 0000

DM 0912 0000

DM 0913 5000

Data
The following data is used.

Word Contents

DM 0010 0002

DM 1000 0000

DM 1001 3000

DM 1002 5000

����� ��% �	����� ���������	�� Section 5-10

��,

Programming
In the following program section, the INC(38) increments DM 0000 when each
step is completed thus allowing CMP(20) to activate the high-speed counter for
steps one and two. The high-speed counter is thus used to compare only the
rightmost four digits and INC(38) and CMP(20) are combined to control execu-
tion of RDM(61) through the values of the leftmost digits.

INC(38)

DM 0000

CMP(20)

DM 0000

DM 0010

RDM(61)

DM 1000

010

CNT511

25315

25506

Always ON Flag

Equals Flag

Refreshing Result Words Refreshing of results words (beginning with R) is influenced by the cycle
time. The time required from refreshing of the PV of the high-speed counter
and refreshing of a result word bit is as shown below. As shown, it is neces-
sary to reduce the cycle time as much as possible when rapid response is
desired in result words.

Max. cycle time

Output

HDM(61) executed

PV refreshed

T1 T2

Max. cycle time

The second part of this delay time, T2, can be eliminated by using IORF(97)
to refresh the desired I/O terminals during program execution.

An interrupt drum output can also be used with HDM(61) to reduce the delay
time (normally T1 + T2) to 1.5 ms max. Refer to 3-8-1 High-speed Counter for
details.

Output Delays Relay outputs are standard on the C20H/C28H/C40H/C60H. When used with
high-speed counters (e.g., in a simple positioning system), the 15 ms max.
relay’s ON/OFF delay can interfere with operation. If this delay is a problem,
the outputs can be easily replaced with transistor outputs, which have a
delay of 1.5 ms. Refer to the Installation Guide for details.

����� ��% �	����� ���������	�� Section 5-10

��"

5-11 Data Shifting
All of the instructions described in this section are used to shift data, but in
differing amounts and directions. The first shift instruction, SFT(10), shifts an
execution condition into a shift register; the rest of the instructions shift data
that is already in memory.

5-11-1 SHIFT REGISTER -- SFT(10)

St: Starting word

IR, AR, HR, LR

E: End word

IR, AR, HR, LR

Operand Data AreasLadder Symbol

I

P

SFT(10)

St

E
R

I : Data input
P : Clock pulse
R : Reset

St must be less than or equal to E, and St and E must be in the same data
area.

If a bit address in one of the words used in a shift register is also used in an
instruction such as KEEP (11) that controls individual bit status, an error
(“COIL DUPL”) will be generated when program syntax is checked on a Pro-
gramming Device other than the Programming Console. The program, how-
ever, will be executed as written. See Example 2: Controlling Bits in Shift
Registers for a programming example that does this.

If I is ON at the leading edge of P, then a logical 1 is placed in bit 00 of word
St. If I is 0 at leading edge of P, the a logical 0 is put in bit 00 of word St. In
either case, all bits are shifted one bit position to the left between St and E.

Execution
condition I

Lost
data

E St+1, St+2, ... St

St designates the rightmost word of the shift register; E designates the left-
most. The shift register includes both of these words and all words between
them. The same word may be designated for St and E to create a 16-bit (i.e.,
1-word) shift register.

When execution condition R goes ON, all bits in the shift register will be
turned OFF (i.e., set to 0) and the shift register will not operate until R goes
OFF again.

Flags There are no flags affected by SFT(10).

Limitations

Description

���� �������� Section 5-11

��4

The following example uses the 1-second clock pulse bit (25502) so that the
execution condition produced by 00005 is shifted into a 3-word register be-
tween IR 010 and IR 012 every second.

I

P

SFT(10)

010

012
R

00005

25502

00006

Address Instruction Operands

00000 LD 00005
00001 LD 25502
00002 LD 00006

00003 SFT(10)

010
012

The following program is used to control the status of the 17th bit of a shift
register running from AR 00 through AR 01. When the 17th bit is to be set,
00004 is turned ON. This causes the jump for JMP(04) 00 not to be made for
that one cycle, and AR 0100 (the 17th bit) will be turned ON. When 12800 is
OFF (i.e., at all times except during the first cycle after 00004 has changed
from OFF to ON), the jump is executed and the status of AR 0100 will not be
changed.

I

P

R

SFT(10)

AR 00

AR 01

JME(05) 00

JMP(04) 00

00200

AR 0100

DIFU(13) 12800

00201

00202

00203

00004

12800

12800

Address Instruction Operands

00000 LD 00200
00001 AND 00201
00002 LD 00202

00003 LD 00203

00004 SFT(10)
AR 00
AR 01

00005 LD 00004
00006 DIFU(13) 12800

00007 LD 12800
00008 JMP(04) 00

00009 LD 12800
00010 OUT AR 0100

00011 JME(05) 00

When a bit that is part of a shift register is used in OUT (or any other instruc-
tion that controls bit status), a syntax error will be generated during the pro-
gram check, but the program will executed properly (i.e., as written).

The following program controls the conveyor line shown below so that faulty
products detected at the sensor are pushed down a chute. To do this, the
execution condition determined by inputs from the first sensor (00001) are
stored in a shift register: ON for good products; OFF for faulty ones. Con-
veyor speed has been adjusted so that HR 0003 of the shift register can be
used to activate a pusher (00500) when a faulty product reaches it, i.e., when
HR 0003 turns ON, 00500 is turned ON to activate the pusher.

Example 1:
Basic Application

Example 2:
Controlling Bits in Shift
Registers

Example 3:
Control Action

���� �������� Section 5-11

���

The program is set up so that a rotary encoder (00000) controls execution of
SFT(10) through a DIFU(13), the rotary encoder is set up to turn ON and
OFF each time a product passes the first sensor. Another sensor (00002) is
used to detect faulty products in the chute so that the pusher output and HR
0003 of the shift register can be reset as required.

Sensor

Chute

(00002)

(00500)

Sensor
(00001)

Rotary Encoder
(00000)

Pusher

I

P

SFT(10)

HR 00

HR 01
R

00001

00000

00003

00500

HR 0003

00002

HR 0003

00500

00000

DIFU(13) 00001
Address Instruction Operands

00000 LD 00000
00001 DIFU(13) 00001
00002 LD 00001

00003 LD 00000

00004 LD 00003
00005 SFT(10)

HR 00

HR 01
00006 LD HR 0003

00007 OUT 00500
00008 LD 00002

00009 OUT NOT 00500
00010 OUT NOT HR 0003

5-11-2 WORD SHIFT -- WSFT(16)

Ladder Symbols Operand Data Areas

WSFT(16)

St

E

@WSFT(16)

St

E

St: Starting word

IR, AR, DM, HR, LR

E: End word

IR, AR, DM, HR, LR

St must be less than or equal to E, and St and E must be in the same data
area.

Limitations

���� �������� Section 5-11

���

When the execution condition is OFF, WSFT(16) is not executed. When the
execution condition is ON, WSFT(16) shifts data between St and E in word
units. Zeros are written into St and the content of E is lost.

F 0 C 2 3 4 5 2 1 0 2 9

E St + 1 St

3 4 5 2 1 0 2 9 0 0 0 0

E St + 1 St

Lost

0000

Flags ER: The St and E words are in different areas, or St is greater than E.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

5-11-3 REVERSIBLE WORD SHIFT -- RWS(17)

C: Control word

IR, AR, DM, HR, TC, LR, #

St: Start word

IR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

E: End word

IR, AR, DM, HR, TC, LR

RWS(17)

C

St

E

@RWS(17)

C

St

E

Limitations St must be less than or equal to E, and St and E must be in the same data
area.

Description When executed with an OFF execution condition, RWS(17) does nothing and
the next instruction line is moved to. When executed with an ON execution
condition, RWS(17) is used to create and control a reversible non-synchro-
nous word shift register between St and E. This shift register only shifts
words when the next word in the register is zero, e.g., if no words in the reg-
ister contain zero, nothing is shifted. Also, only one word is shifted for each
word in the register that contains zero. When the contents of a word are
shifted to the next word, the original word’s contents are set to zero. In es-
sence, when the register is shifted, each zero word in the register trades
places with the next word. (See Example below.)

The shift direction (i.e., whether the “next word” is the next higher or the next
lower word) is designated in C. C is also used to reset the register. All of any
portion of the register can be reset by designating the desired portion with St
and E.

Description

���� �������� Section 5-11

���

Control Word Bits 00 through 12 of C are not used. Bit 13 is the shift direction: turn bit 13
ON to shift the non-zero data down (toward lower addressed words) and
OFF to shift up (toward higher addressed words). Bit 14 is the Shift Enable
Bit: turn bit 14 ON to enable shift register operation according to bit 13, and
OFF to disable the register. Bit 15 is the Reset Bit: the register will be reset
(set to zero) between St and E when RWS(17) is executed with bit 15 ON.
Turn bit 15 OFF for normal operation.

15 14 13 12 Not used.

Shift direction
1 (ON): Down
0 (OFF): Up

Shift Enable Bit

Reset

Not used.

Flags ER: St and E are not in the same data area or St is greater than E.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

Example The following instruction is used to shift words in an 11-word shift register
created between DM 0100 and DM 0110 assuming that HR 1215 (the Reset
Bit in the control word) is OFF. If HR 1215 is ON, the entire register would be
set to 0000. The data changes that would occur for the given register and
control word contents are also shown.

DM 0100 1234 0000

DM 0101 0000 1234

DM 0102 0000 0000

DM 0103 2345 2345

DM 0104 3456 0000

DM 0105 0000 3456

DM 0106 4567 4567

DM 0107 5678 5678

DM 0108 6789 0000

DM 0109 0000 6789

DM 0110 789A 789A

Before
execution

After
execution

Shift
direction

HR 1213: OFF (Shift upward)
HR 1214: ON (Shift enabled)
HR 1215: OFF (Reset OFF)

���� �������� Section 5-11

��#

5-11-4 ARITHMETIC SHIFT LEFT -- ASL(25)

Wd: Shift word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

ASL(25)

Wd

@ASL(25)

Wd

When the execution condition is OFF, ASL(25) is not executed. When the
execution condition is ON, ASL(25) shifts a 0 into bit 00 of Wd, shifts the bits
of Wd one bit to the left, and shifts the status of bit 15 into CY.

1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 1

CY
Bit
00

Bit
15

0

Flags ER: Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

CY: Receives the status of bit 15.

EQ: ON when the content of Wd is zero; otherwise OFF.

5-11-5 ARITHMETIC SHIFT RIGHT -- ASR(26)

Wd: Shift word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

ASR(26)

Wd

@ASR(26)

Wd

When the execution condition is OFF, ASR(25) is not executed. When the
execution condition is ON, ASR(25) shifts a 0 into bit 15 of Wd, shifts the bits
of Wd one bit to the right, and shifts the status of bit 00 into CY.

1 0 0 1 0 1 1 0 0 1 1 0 0 1 01

Bit
00

Bit
15 CY

0

Flags ER: Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

CY: Receives the data of bit 00.

EQ: ON when the content of Wd is zero; otherwise OFF.

Description

Description

���� �������� Section 5-11

��'

5-11-6 ROTATE LEFT -- ROL(27)

Wd: Rotate word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

ROL(27)

Wd

@ROL(27)

Wd

When the execution condition is OFF, ROL(27) is not executed. When the
execution condition is ON, ROL(27) shifts all Wd bits one bit to the left, shift-
ing CY into bit 00 of Wd and shifting bit 15 of Wd into CY.

1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 10

CY
Bit
00

Bit
15

Use STC(41) to set the status of CY or CLC(41) to clear the status of CY be-
fore doing a rotate operation to ensure that CY contains the proper status
before execution ROL(27).

Flags ER: Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

CY: Receives the data of bit 15.

EQ: ON when the content of Wd is zero; otherwise OFF.

5-11-7 ROTATE RIGHT -- ROR(28)

Wd: Rotate word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

ROR(28)

Wd

@ROR(28)

Wd

When the execution condition is OFF, ROR(28) is not executed. When the
execution condition is ON, ROR(28) shifts all Wd bits one bit to the right,
shifting CY into bit 15 of Wd and shifting bit 00 of Wd into CY.

0 1 0 1 0 1 0 0 0 1 1 1 0 0 0 10

Bit
15CY

Bit
00

Use STC(41) to set the status of CY or CLC(41) to clear the status of CY be-
fore doing a rotate operation to ensure that CY contains the proper status
before execution ROR(28).

Flags ER: Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

CY: Receives the data of bit 15.

EQ: ON when the content of Wd is zero; otherwise OFF.

Description

Precautions

Description

Precautions

���� �������� Section 5-11

��(

5-11-8 ONE DIGIT SHIFT LEFT -- SLD(74)

Ladder Symbols Operand Data Areas

SLD(74)

St

E

@SLD(74)

St

E

St: Starting word

IR, AR, DM, HR, LR

E: End word

IR, AR, DM, HR, LR

St and E must be in the same data area, and E must be greater than or equal
to St.

When the execution condition is OFF, SLD(74) is not executed. When the
execution condition is ON, SLD(74) shifts data between St and E (inclusive)
by one digit (four bits) to the left. 0 is written into the rightmost digit of the St,
and the content of the leftmost digit of E is lost.

5

E

8 1

St

F C 97D

Lost data 0

...

The shift operation might not be completed if a power failure occurs during
shift operation.

ER: The St and E words are in different areas, or St is greater than E.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

5-11-9 ONE DIGIT SHIFT RIGHT -- SRD(75)

Ladder Symbols Operand Data Areas

SRD(75)

E

St

@SRD(75)

E

St

E: End word

IR, AR, DM, HR, LR

St: Starting word

IR, AR, DM, HR, LR

St and E must be in the same data area, and E must be less than or equal to
St.

Limitations

Description

Precautions

Flags

Limitations

���� �������� Section 5-11

���

When the execution condition is OFF, SRD(75) is not executed. When the
execution condition is ON, SRD(75) shifts data between St and E (inclusive)
by one digit (four bits) to the right. 0 is written into the leftmost digit of St and
the rightmost digit of E is lost.

2

St

3 1

E

4 5 C8F

Lost data0

...

The shift operation might not be completed if a power failure occurs during
shift operation.

Flags ER: The St and E words are in different areas, or St is greater than E.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

5-11-10 REVERSIBLE SHIFT REGISTER -- SFTR(84)

C: Control word

IR, AR, DM, HR, LR

St: Starting word

IR, AR, DM, HR, LR

Ladder Symbols

Operand Data Areas

E: End word

IR, AR, DM, HR, LR

SFTR(84)

C

St

E

@SFTR(84)

C

St

E

St must be less than or equal to E, and St and E must be in the same data
area.

SFTR(84) is used to create a single- or multiple-word shift register that can
shift data to either the right or the left. To create a single-word register, desig-
nate the same word for St and E. The control word provides the shift direc-
tion, the status to be put into the register, the shift pulse, and the reset input.
The control word is allocated as follows:

15 14 13 12 Not used.

Shift direction
1 (ON): Left
0 (OFF): Right

Data input

Clock pulse

Reset

Flags ER: St and E are not in the same data area or ST is greater than E.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

CY: Receives the status of bit 00 of St or bit 15 of E, depending on the
shift direction.

Description

Precautions

Limitations

Description

���� �������� Section 5-11

��,

In the following example, IR 00005, IR 00006, IR 00007, and IR 00008 are
used to control the bits of C used in @SHIFT(84). The shift register is be-
tween LR 20 and LR 21, and it is controlled through IR 00009.

Address Instruction Operands Address Instruction Operands

05012

00005

05013

05014

05015

00006

00007

00008

00009

Direction

Status to input

Shift pulse

Reset

@SFTR(84)

050

LR 20

LR 21

00000 LD 00005

00001 OUT 05012
00002 LD 00006
00003 OUT 05013

00004 LD 00007

00005 OUT 05014
00006 LD 00008

00007 OUT 05015

00008 LD 00009
00009 @SFTR(84)

050

LR 20

LR 21

Example

���� �������� Section 5-11

��"

5-12 Data Movement
This section describes the instructions used for moving data between differ-
ent addresses in data areas. These movements can be programmed to be
within the same data area or between different data areas. Data movement is
essential for utilizing all of the data areas of the PC. Effective communica-
tions in Link Systems also require data movement. All of these instructions
change only the content of the words to which data is being moved, i.e., the
content of source words is the same before and after execution of any of the
data movement instructions.

5-12-1 MOVE -- MOV(21)

S: Source word

IR, SR, AR, DM, HR, TC, LR, #

D: Destination word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

MOV(21)

S

D

@MOV(21)

S

D

When the execution condition is OFF, MOV(21) is not executed. When the
execution condition is ON, MOV(21) copies the content of S to D.

Source word Destination word

Bit status
not changed.

TC numbers cannot be designated as D to change the PV of the timer or
counter. However, these can be easily changed using BSET(71).

Flags ER: Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when all zeros are transferred to D.

5-12-2 MOVE NOT -- MVN(22)

S: Source word

IR, SR, AR, DM, HR, TC, LR, #

D: Destination word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

MVN(22)

S

D

@MVN(22)

S

D

When the execution condition is OFF, MVN(22) is not executed. When the
execution condition is ON, MVN(22) transfers the complement of the content
of S (specified word or four-digit hexadecimal constant) to D, i.e., for each

Description

Precautions

Description

���� �	������ Section 5-12

�#4

ON bit in S, the corresponding bit in D is turned OFF, and for each OFF bit in
S, the corresponding bit in D is turned ON.

Source word Destination word

Bit status
inverted.

TC numbers cannot be designated as D to change the PV of the timer or
counter. However, these can be easily changed using BSET(71).

Flags ER: Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when all zeros are transferred to D.

5-12-3 BLOCK TRANSFER -- XFER(70)

N: Number of words (BCD)

IR, SR, AR, DM, HR, TC, LR, #

S: Starting source word

IR, SR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

D: Starting destination word

IR, AR, DM, HR, TC, LR

XFER(70)

N

S

D

@XFER(70)

N

S

D

Both S and D may be in the same data area, but their respective block areas
must not overlap. S and S+N--1 must be in the same data area, as must D
and D+N--1.

When the execution condition is OFF, XFER(70) is not executed. When the
execution condition is ON, XFER(70) copies the contents of S, S+1, ...,
S+N--1 to D, D+1, ..., D+N--1.

2

D

3 4 5

1

D+1

3 4 5

2

D+2

3 4 2

2

D+N--1

6 4 5

2

S

3 4 5

1

S+1

3 4 5

2

S+2

3 4 2

2

S+N--1

6 4 5

Flags ER: N is not BCD

S and S+N--1 or D and D+N--1 are not in the same data area.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

Precautions

Limitations

Description

���� �	������ Section 5-12

�#�

5-12-4 BLOCK SET -- BSET(71)

S: Source data

IR, SR, AR, DM, HR, TC, LR, #

St: Starting word

IR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

E: End Word

IR, AR, DM, HR, TC, LR

BSET(71)

S

St

E

@BSET(71)

S

St

E

St must be less than or equal to E, and St and E must be in the same data
area.

When the execution condition is OFF, BSET(71) is not executed. When the
execution condition is ON, BSET(71) copies the content of S to all words
from St through E.

2

S

3 4 5 2

St

3 4 5

2

St+1

3 4 5

2

St+2

3 4 5

2

E

3 4 5

BSET(71) can be used to change timer/counter PV. (This cannot be done
with MOV(21) or MVN(22).) BSET(71) can also be used to clear sections of a
data area, i.e., the DM area, to prepare for executing other instructions.

Flags ER: St and E are not in the same data area or St is greater than E.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

Limitations

Description

���� �	������ Section 5-12

�#�

The following example shows how to use BSET(71) to change the PV of a
timer depending on the status of IR 00003 and IR 00004. When IR 00003 is
ON, TIM 010 will operate as a 50-second timer; when IR 00004 is ON, TIM
010 will operate as a 30-second timer.

@BSET(71)

#0500

TIM 010

TIM 010

@BSET(71)

#0300

TIM 010

TIM 010

999.9 s

00004

00003

00003

00004

00004

00003

TIM 010

#9999

Address Instruction Operands

00000 LD 00003
00001 AND NOT 00004

00002 @BSET(71)
0500

TIM 010
TIM 010

00003 LD 00004
00004 AND NOT 00003
00005 @BSET(71)

0300

TIM 010
TIM 010

00006 LD 00003

00007 OR 00004

00008 TIM 010
9999

5-12-5 DATA EXCHANGE -- XCHG(73)

E1: Exchange word 1

IR, AR, DM, HR, TC, LR

E2: Exchange word 2

IR, AR, DM, HR, TC, LR

Ladder Symbols Operand Data Areas

XCHG(73)

E1

E2

@XCHG(73)

E1

E2

When the execution condition is OFF, XCHG(73) is not executed. When the
execution condition is ON, XCHG(73) exchanges the content of E1 and E2.

E2E1

If you want to exchange content of blocks whose size is greater than 1 word,
use work words as an intermediate buffer to hold one of the blocks using
XFER(70) three times.

Flags ER: Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

Example

Description

���� �	������ Section 5-12

�#�

5-12-6 MOVE BIT -- MOVB(82)

S: Source word

IR, SR, AR, DM, HR, LR, #

Bi: Bit designator (BCD)

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

D: Destination word

IR, AR, DM, HR, LR

MOVB(82)

S

Bi

D

@MOVB(82)

S

Bi

D

Limitations: The rightmost two digits and the leftmost two digits of Bi must each be be-
tween 00 and 15.

When the execution condition is OFF, MOVB(82) is not executed. When the
execution condition is ON, MOVB(82) copies the specified bit of S to the spe-
cified bit in D. The bits in S and D are specified by Bi. The rightmost two dig-
its of Bi designate the source bit; the leftmost two bits designate the destina-
tion bit.

1

Bi

1 2 0

Source bit (00 to 15)

Destination bit (00 to 15)

0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1

Bit
15

Bit
00

0 1 0 1 0 1 0 0 0 1 1 1 0 0 0 1

0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1

S

D

Bi

1 2 0 1Bit
15

Bit
15

Bit
00

Bit
00

Flags ER: C is not BCD, or it is specifying a non-existent bit (i.e., bit specifica-
tion must be between 00 and 15).

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

5-12-7 MOVE DIGIT -- MOVD(83)

S: Source word

IR, SR, AR, DM, HR, TC, LR, #

Di: Digit designator (BCD)

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

D: Destination word

IR, AR, DM, HR, TC, LR

MOVD(83)

S

Di

D

@MOVD(83)

S

Di

D

Limitations The rightmost three digits of Di must each be between 0 and 3.

Description

���� �	������ Section 5-12

�##

When the execution condition is OFF, MOVD(83) is not executed. When the
execution condition is ON, MOVD(83) copies the content of the specified
digit(s) in S to the specified digit(s) in D. Up to four digits can be transferred
at one time. The first digit to be copied, the number of digits to be copied,
and the first digit to receive the copy are designated in Di as shown below.
Digits from S will be copied to consecutive digits in D starting from the desig-
nated first digit and continued for the designated number of digits. If the last
digit is reached in either S or D, further digits are used starting back at digit 0.

First digit in S (0 to 3)

Number of digits (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

First digit in D (0 to 3)

Digit number: 3 2 1 0

Not used.

The following show examples of the data movements for various values of
Di.

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

S

Di: 0031 Di: 0023

Di: 0030Di: 0010
S

SS

0

1

2

3

D

0

1

2

3

D

0

1

2

3

D

0

1

2

3

D

ER: At least one of the rightmost three digits of Di is not between 0 and 3.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

Description

Digit Designator

Flags

���� �	������ Section 5-12

�#'

5-13 Data Comparison
This section describes the instructions used for comparing data. CMP(20) is
used to compare the contents of two words; BCMP(68) is used to determine
within which of several preset ranges the content of one word lies.

5-13-1 COMPARE -- CMP(20)

Cp1: First compare word

IR, SR, AR, DM, HR, TC, TR, #

Cp2: Second compare word

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols Operand Data Areas

CMP(20)

Cp1

Cp2

When comparing a value to the PV of a timer or counter, the value must be in
BCD.

When the execution condition is OFF, CMP(20) is not executed. When the
execution condition is ON, CMP(20) compares Cp1 and Cp2 and outputs the
result to the GR, EQ, and LE flags in the SR area.

Placing other instructions between CMP(20) and the operation which ac-
cesses the EQ, LE, and GR flags may change the status of these flags. Be
sure to access them before the desired status is changed.

Flags ER: Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON if Cp1 equals Cp2.

LE: ON if Cp1 is less than Cp2.

GR: ON if Cp1 is greater than Cp2.

Limitations

Description

Precautions

���� �	������	� Section 5-13

�#(

The following example shows how to save the comparison result immedi-
ately. If the content of HR 09 is greater than that of 010, 00200 is turned ON;
if the two contents are equal, 00201 is turned ON; if content of HR 09 is less
than that of 010, 00202 is turned ON. In some applications, only one of the
three OUTs would be necessary, making the use of TR 0 unnecessary. With
this type of programming, 00200, 00201, and 00202 are changed only when
CMP(20) is executed.

CMP(20)

010

HR 09

00000

25505
00200

25507
00202

TR
0

25506

00201

Greater Than

Equal

Less Than

Address Instruction Operands Address Instruction Operands

00000 LD 00000
00001 OUT TR 0

00002 CMP(20)
010

HR 09
00003 AND 25505

00004 OUT 00200

00005 LD TR 0
00006 AND 25506

00007 OUT 00201
00008 LD TR 0

0009 AND 25507
00010 OUT 00202

The following example uses TIM, CMP(20), and the LE flag (25507) to pro-
duce outputs at particular times in the timer’s countdown. The timer is started
by turning ON 00000. When 00000 is OFF, TIM 010 is reset and the second
two CMP(20)s are not executed (i.e., executed with OFF execution condi-
tions). Output 00200 is produced after 100 seconds; output 00201, after 200
seconds; output 00202, after 300 seconds; and output 00204, after 500 sec-
onds.

The branching structure of this diagram is important in order to ensure that
00200, 00201, and 00202 are controlled properly as the timer counts down.

Example 1:
Saving CMP(20) Results

Example 2:
Obtaining Indications
during Timer Operation

���� �	������	� Section 5-13

�#�

Because all of the comparisons here use to the timer’s PV as reference, the
other operand for each CMP(20) must be in 4-digit BCD.

#2000

CMP(20)

TIM 010

#3000

CMP(20)

TIM 010

CMP(20)

TIM 010

#4000

00201

00204

00202

00000

00200

25507

00200

25507

00201

25507

TIM 010

Output at
100 s.

Output at
200 s.

Output at
300 s.

Output at
500 s.

Address Instruction Operands Address Instruction Operands

00000 LD 00000
00001 TIM 010

5000

00002 CMP(20)

TIM 010
4000

00003 AND 25507

00004 OUT 00200
00005 LD 00200

00006 CMP(20)
TIM 010

3000

00007 AND 25507
00008 OUT 00201
00009 LD 00201

00010 CMP(20)

TIM 010
2000

00011 AND 25507

00012 OUT 00202
00013 LD TIM 010

00014 OUT 00204

TIM 010

#5000

���� �	������	� Section 5-13

�#,

5-13-2 BLOCK COMPARE -- BCMP(68)

CD: Compare data (BCD)

IR, SR, AR, DM, HR, TC, LR, #

CB: First comparison block word

IR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR, TC, LR

BCMP(68)

CD

CB

R

@BCMP(68)

CD

CB

R

All data is compared in BCD form except for CB, which is in hexadecimal. All
comparison block words must be within the same data area, as must all re-
sult words.

When the execution condition is OFF, BCMP(68) is not executed. When the
execution condition is ON, BCMP(68) compares CD to the ranges defined by
a block consisting of CB+1, CB+2, CB+3 ..., CB+2n+2. The size of the table
is determined by n, which is given in bits 00 through 07 of CB. The value of n
is in hexadecimal and can be between 0 and 255, i.e., comparisons can be
made for between 1 and 256 ranges.

Each range is defined by two words, the first one providing one limit and the
second word providing the other limit. If CD is found to be within any of these
ranges (inclusive of the limits), the corresponding bit in R is set. If more than
16 ranges are compared, bits are turned ON in consecutive words following
R, i.e., R+1, R+2, etc. The comparisons that are made and the correspond-
ing bit in R that is set for each true comparison are shown below. The rest of
the bits in the results words will be turned OFF.

CB+1 ≤ CD ≤ CB+2 Bit 00 of R
CB+3 ≤ CD ≤ CB+4 Bit 01 of R
CB+5 ≤ CD ≤ CB+6 Bit 02 of R
CB+7 ≤ CD ≤ CB+8 Bit 03 of R
CB+9 ≤ CD ≤ CB+10 Bit 04 of R
CB+11 ≤ CD ≤ CB+12 Bit 05 of R
CB+13 ≤ CD ≤ CB+14 Bit 06 of R
CB+15 ≤ CD ≤ CB+16 Bit 07 of R
CB+17 ≤ CD ≤ CB+18 Bit 08 of R
CB+29 ≤ CD ≤ CB+20 Bit 09 of R
CB+21 ≤ CD ≤ CB+22 Bit 10 of R
CB+23 ≤ CD ≤ CB+24 Bit 11 of R
CB+25 ≤ CD ≤ CB+26 Bit 12 of R
CB+27 ≤ CD ≤ CB+28 Bit 13 of R
CB+39 ≤ CD ≤ CB+30 Bit 14 of R
CB+31 ≤ CD ≤ CB+32 Bit 15 of R
CB+33 ≤ CD ≤ CB+34 Bit 00 of R+1
CB+35 ≤ CD ≤ CB+36 Bit 01 of R+1
CB+37 ≤ CD ≤ CB+38 Bit 02 of R+1
etc. etc.
CB+2n+1 ≤ CD ≤ CB+2n+2 (See below.)

The last bit required for the result will be the truncated integer quotient of
(n--1)/15, with one less than the remainder being the bit number of the last
required bit.

Limitations

Description

���� �	������	� Section 5-13

�#"

Ring Tables Because the values of word pairs determining any one range can be set with
either the largest or the smallest value first, the table can be set up to oper-
ate in ring form.

Flags ER: CB through CB+2 exceeds the data area.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

The following example shows the comparisons made and the results pro-
vided for BCMP(68). Here, the comparison is made during each cycle when
00000 is ON.

CD: 000 First limits Second limits R: 128

000 = 0175 DM 1001 0000 DM 1002 0100 IR 12800 0

DM 1003 0080 DM 1004 0180 IR 12801 1

DM 1005 0160 DM 1006 0260 IR 12802 1

etc. etc. etc. etc. etc. etc.

DM 1031 1200 DM 1032 1300 IR 12815 0

CB: 1000 DM 1033 1280 DM 1034 1380 IR 12900 0

DM 1035 1360 DM 1036 1460 IR 12901 0

DM 1000 = 0017 DM 1037 1440 DM 1038 1540 IR 12902 0

etc. etc. etc. etc. etc. etc.

DM 1047 1840 DM 1048 1940 IR 12907 0

BCMP(68)

000

DM 1000

128

00000

Compare data in IR 000

(which contains 0175)
with the given ranges.

Content of CB desig-
nates normal BCD com-
parison and 24 ranges,
i.e., n is 23.

Flags ER: Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

Example 1

���� �	������	� Section 5-13

�'4

The following example shows how to control the operation of water sprinklers
and lights based on the current time in AR 17.

Spray

0 1
2

3

4

5

6

7

8

9

10

1112
13

14

15

16

17

18

19

20

21

22

23

Spray

Spray

Spray

Spray

Lights ON

Spray

DM 0000 0006

DM 0001 0000

DM 0002 0100

DM 0003 0400

DM 0004 0500

DM 0005 0800

DM 0006 0900

DM 0007 1200

DM 0008 1300

DM 0009 1600

DM 0010 1700

DM 0011 2000

DM 0012 2100

DM 0013 1800

DM 0014 0600

BCMP(68)

AR 17

DM 0000

128

Always
ON Flag

Spray00200

12800

12801

12802

12803

12804

12805

Light ON00201
12806

Example 2

���� �	������	� Section 5-13

�'�

5-14 Data Conversion
The conversion instructions convert word data from one format into another
format and output the converted data to specified result word(s). Conversions
are available to convert between binary (hexadecimal) and BCD, to and from
ASCII, and between multiplexed and non-multiplexed data. All of these in-
structions change only the content of the words to which converted data is
being moved, i.e., the content of source words is the same before and after
execution of any of the conversion instructions.

5-14-1 BCD-TO-BINARY -- BIN(23)

S: Source word (BCD)

IR, SR, AR, DM, HR, TC, LR

R: Result word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

BIN(23)

S

R

@BIN(23)

S

R

When the execution condition is OFF, BIN(23) is not executed. When the
execution condition is ON, BIN(23) converts the BCD content of S into the
numerically equivalent binary bits, and outputs the binary value to R. Only
the content of R is changed; the content of S is left unchanged.

S

R

BCD

Binary

BIN(23) can be used to convert BCD to binary so that displays on the Pro-
gramming Console or any other programming device will appear in hexadeci-
mal rather than decimal. It can also be used to convert to binary to perform
binary arithmetic operations rather than BCD arithmetic operations, e.g.,
when BCD and binary values must be added.

Flags ER: The content of S is not BCD.
Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when 0 is placed in R.

5-14-2 BINARY-TO-BCD -- BCD(24)

S: Source word (binary)

IR, SR, AR, DM, HR, LR

R: Result word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

BCD(24)

S

R

@BCD(24)

S

R

If the content of S exceeds 270F, the converted result would exceed 9999
and BCD(24) will not be executed. When the instruction is not executed, the
content of R remains unchanged.

Description

Limitations

���� �	������	� Section 5-14

�'�

BCD(24) converts the binary (hexadecimal) content of S into the numerically
equivalent BCD bits, and outputs the BCD bits to R. Only the content of R is
changed; the content of S is left unchanged.

S

RBCD

Binary

BCD(24) can be used to convert binary to BCD so that displays on the Pro-
gramming Console or any other programming device will appear in decimal
rather than hexadecimal. It can also be used to convert to BCD to perform
BCD arithmetic operations rather than binary arithmetic operations, e.g.,
when BCD and binary values must be added.

Flags ER: S is greater than 270F.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the content of R is zero.

5-14-3 HOURS-TO-SECONDS -- HTS(65)

S: Beginning source word (BCD)

IR, SR, AR, DM, HR, TC, LR

R: Beginning result word (BCD)

IR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

---: Not used.

HTS(65)

S

R

@HTS(65)

S

R

Limitations S and S+1 must be within the same data area. R and R+1 must be within the
same data area. S and S+1 must be BCD and must be in the proper hours/
minutes/seconds format.

Description HTS(65) is used to convert time notation in hours/minutes/seconds to an
equivalent time in seconds only.

For the source data, the seconds are designated in bits 00 through 07 and
the minutes are designated in bits 08 through 15 of S. The hours are desig-
nated in S+1. The maximum is thus 9,999 hours, 59 minutes, and 59 sec-
onds.

The results are output to R and R+1. The maximum obtainable value is
35,999,999 seconds.

Flags ER: S and S+1 or R and R+1 are not in the same data area.

S and/or S+1 do not contain BCD.

Number of seconds and/or minutes exceeds 59.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: Turns ON when the result is zero.

Description

���� �	������	� Section 5-14

�'�

Example When 00000 is OFF (i.e., the execution condition is ON), the following in-
struction would convert the hours, minutes, and seconds given in HR 12 and
HR 13 to seconds and store the results in DM 0100 and DM 0101 as shown.

HTS(65)

HR 12

DM 0100

000

00000

HR 12 3 2 0 7

HR 13 2 8 1 5

DM 0100 5 9 2 7

DM 0101 1 0 1 3

2,815 hrs, 32 min, 07 s

10,135,927 s

Address Instruction Operands

00000 LD NOT 00000

00001 HTS(65)
HR 12
DM 0100

000

5-14-4 SECONDS-TO-HOURS -- STH(66)

S: Beginning source word (BCD)

IR, SR, AR, DM, HR, TC, LR

R: Beginning result word (BCD)

IR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

---: Not used.

STH(66)

S

R

@STH(66)

S

R

Limitations S and S+1 must be within the same data area. R and R+1 must be within the
same data area. S and S+1 must be BCD and must be between 0 and
35,999,999 seconds. For any setting over 15,000,000 seconds, increase the
watchdog timer to 180 ms.

Description STH(66) is used to convert time notation in seconds to an equivalent time in
hours/minutes/seconds.

The number of seconds designated in S and S+1 is converted to hours/minu-
tes/seconds and placed in R and R+1.

For the results, the seconds are placed in bits 00 through 07 and the minutes
are placed in bits 08 through 15 of R. The hours are placed in R+1. The max-
imum will be 9,999 hours, 59 minutes, and 59 seconds.

Flags ER: S and S+1 or R and R+1 are not in the same data area.

S and/or S+1 do not contain BCD or exceed 35,999,999 seconds.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: Turns ON when the result is zero.

���� �	������	� Section 5-14

�'#

Example When 00000 is OFF (i.e., the execution condition is ON), the following in-
struction would convert the seconds given in HR 12 and HR 13 to hours, min-
utes, and seconds and store the results in DM 0100 and DM 0101 as shown.

STH(66)

HR 12

DM 0100

000

00000

HR 12 5 9 2 7

HR 13 1 0 1 3

DM 0100 3 2 0 7

DM 0101 2 8 1 5

10,135,927 s

2,815 hrs, 32 min, 07 s

Address Instruction Operands

00000 LD NOT 00000
00001 STH(66)

HR 12
DM 0100

000

5-14-5 HEXADECIMAL CONVERT -- HEX(69)

S: Source word

IR, SR, AR, DM, HR, TC, LR

Di: Digit designator

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

D: First destination word

IR, AR, DM, HR, LR

HEX(69)

S

Di

D

@HEX(69)

S

Di

D

Di must be within the values given below.

All source words must be in the same data area.

The ASCII codes in the source bytes designated for conversion must be
equivalent to hexadecimal numbers (between 0 and F).

When the execution condition is OFF, HEX(69) is not executed. When the
execution condition is ON, HEX(69) converts the designated 8-bit ASCII
code(s) in S into it’s hexadecimal equivalent and places it into the destination
word D beginning at the designated digit.

Up to four ASCII codes in S to S+2 may be converted in order from the des-
ignated first code. The first code (rightmost or leftmost 8 bits), the number of
codes to be converted, and the digit of D to receive the first number are des-
ignated in Di. If multiple codes are designated, they will be placed in order
starting from the designated digit of D. If more digits are designated than re-
main in D (counting from the first designated digit), further digits will be used
starting back at the beginning of D.

ASC(86) can be used together with HEX(69) to convert data to and from
ASCII characters for transmission through the RS-232C interface.

Refer to Appendix I for a table of extended ASCII characters.

Limitations

Description

���� �	������	� Section 5-14

�''

The digits of Di are set as shown below.

Specifies the first digit of D to be used (0 to 3).

Number of codes to be converted (0 to 3).
0: 1 code
1: 2 codes
2: 3 codes
3: 4 codes

First half of S to be converted.
0: Rightmost 8 bits (1st half)
1: Leftmost 8 bits (2nd half)

Parity 0: none,
1: even,
2: odd

Digit number: 3 2 1 0

Some examples of Di values and the 8-bit ASCII code to 4-bit binary conver-
sions that they produce are shown below.

0

1

2

3

D

Di: 0011

S

Di: 0030

Di: 0130Di: 0112

1st half

2nd half

0

1

2

3

DS

1st half

2nd half

S+1

1st half

2nd half

0

1

2

3

DS

1st half

2nd half

S+1

1st half

2nd half

0

1

2

3

D

S

1st half

2nd half

S+1

1st half

2nd half

S+1

1st half

2nd half

The leftmost bit of each 2-digit ASCII character is adjusted for either even,
odd, or no parity. If no parity is designated, the leftmost bit must be zero.

When even parity is designated, the leftmost bit must be adjusted so that the
total number of ON bits is even, e.g., when adjusted for even parity, ASCII
“31” (00110001) will be “B1” (10110001: parity bit turned ON to create an
even number of ON bits); ASCII “36” (00110110) will be “36” (00110110: par-
ity bit turned OFF because the number of ON bits is already even). The sta-
tus of the parity bit does not affect the meaning of the ASCII code.

When odd parity is designated, the leftmost bit of each ASCII character must
be adjusted so that there is an odd number of ON bits.

If the parity in a source ASCII character does not agree with the parity speci-
fied in Di, the ER Flag will be turned ON and the instruction will not be ex-
ecuted.

Digit Designator

Parity

���� �	������	� Section 5-14

�'(

Flags ER: The first source word, S, is not in the same data area as S+1 or S+2.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

The parity in the source ASCII code does not agree with the parity
specified in Di.

The source ASCII code is not in the range 0 to F and cannot be con-
verted to hexadecimal.

5-14-6 4-TO-16 DECODER -- MLPX(76)

S: Source word

IR, SR, AR, DM, HR, TC, LR

Di: Digit designator

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR, LR

MLPX(76)

S

Di

R

@MLPX(76)

S

Di

R

The rightmost two digits of Di must each be between 0 and 3.

All result words must be in the same data area.

When the execution condition is OFF, MLPX(76) is not executed. When the
execution condition is ON, MLPX(76) converts up to four, four-bit hexadeci-
mal digits from S into decimal values from 0 to 15, each of which is used to
indicate a bit position. The bit whose number corresponds to each converted
value is then turned ON in a result word. If more than one digit is specified,
then one bit will be turned ON in each of consecutive words beginning with R.
(See examples, below.)

The following is an example of a one-digit decode operation from digit num-
ber 1 of S, i.e., here Di would be 0001.

Source word

First result word

C

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Bit C (i.e., bit number 12) turned ON.

The first digit and the number of digits to be converted are designated in Di. If
more digits are designated than remain in S (counting from the designated
first digit), the remaining digits will be taken starting back at the beginning of
S. The final word required to store the converted result (R plus the number of
digits to be converted) must be in the same data area as R, e.g., if two digits
are converted, the last word address in a data area cannot be designated; if
three digits are converted, the last two words in a data area cannot be desig-
nated.

Limitations

Description

���� �	������	� Section 5-14

�'�

The digits of Di are set as shown below.

Specifies the first digit to be converted (0 to 3)

Number of digits to be converted (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

Not used

Digit number: 3 2 1 0

Some example Di values and the digit-to-word conversions that they produce
are shown below.

0

1

2

3

R

R + 1

R

R + 1

R + 2

0

1

2

3

0

1

2

3

0

1

2

3

R

R + 1

R + 2

R + 3

R

R + 1

R + 2

R + 3

S

Di: 0031 Di: 0023

Di: 0030Di: 0010

S

SS

Flags ER: Undefined digit designator, or R plus number of digits exceeds a data
area.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

Digit Designator

���� �	������	� Section 5-14

�',

The following program converts three digits of data from DM 0020 to bit posi-
tions and turns ON the corresponding bits in three consecutive words starting
with HR 10.

00000
MLPX(76)

DM 0020

#0021

HR 10

Address Instruction Operands

00000 LD 00000
00001 MLPX(76)

DM 00200

0021

HR 10

S: DM 0020 R: HR 10 R+1: HR 11 R+2: HR 12

DM 00 20 HR 1000 0 HR 1100 0 HR 1200 1

DM 01 21 HR 1001 0 HR 1101 0 HR 1201 0

DM 02 22 HR 1002 0 HR 1102 0 HR 1202 0

DM 03 23 HR 1003 0 HR 1103 0 HR 1203 0

DM 04 1 20 HR 1004 0 HR 1104 0 HR 1204 0

DM 05 1 21 1 HR 1005 0 HR 1105 0 HR 1205 0

DM 06 1 22 HR 1006 0 HR 1106 1 HR 1206 0

DM 07 1 23 HR 1007 0 HR 1107 0 HR 1207 0

DM 08 0 20 HR 1008 0 HR 1108 0 HR 1208 0

DM 09 1 21 2 HR 1009 0 HR 1109 0 HR 1209 0

DM 10 1 22 HR 1010 0 HR 1110 0 HR 1210 0

DM 11 0 23 HR 1011 0 HR 1111 0 HR 1211 0

DM 12 0 20 HR 1012 0 HR 1112 0 HR 1212 0

DM 13 0 21 3 HR 1013 0 HR 1113 0 HR 1213 0

DM 14 0 22 HR 1014 0 HR 1114 0 HR 1214 0

DM 15 0 23 HR 1015 1 HR 1115 0 HR 1215 0

15

6

0

Not
Converted

5-14-7 16-TO-4 ENCODER -- DMPX(77)

SB: First source word

IR, SR, AR, DM, HR, TC, LR

R: Result word

IR, AR, DM, HR, LR

Ladder Symbols

Operand Data Areas

Di: Digit designator

IR, AR, DM, HR, TC, LR, #

DMPX(77)

SB

R

Di

@DMPX(77)

SB

R

Di

The rightmost two digits of Di must each be between 0 and 3.

All source words must be in the same data area.

When the execution condition is OFF, DMPX(77) is not executed. When the
execution condition is ON, DMPX(77) determines the position of the highest
ON bit in S, encodes it into single-digit hexadecimal value corresponding to

Example

Limitations

Description

���� �	������	� Section 5-14

�'"

the bit number of the highest ON bit number, then transfers the hexadecimal
value to the specified digit in R. The digits to receive the results are specified
in Di, which also specifies the number of digits to be encoded.

The following is an example of a one-digit encode operation to digit number 1
of R, i.e., here Di would be 0001.

Result word

First source word

C

0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0

C transferred to indicate bit number 12 as
the highest ON bit.

Up to four digits from four consecutive source words starting with S may be
encoded and the digits written to R in order from the designated first digit. If
more digits are designated than remain in R (counting from the designated
first digit), the remaining digits will be placed at digits starting back at the be-
ginning of R.

The final word to be converted (S plus the number of digits to be converted)
must be in the same data area as SB.

The digits of Di are set as shown below.

Specifies the first digit to receive converted data (0 to 3).

Number of words to be converted (0 to 3)
0: 1 word
1: 2 words
2: 3 words
3: 4 words

Not used.

Digit number: 3 2 1 0

Some example Di values and the word-to-digit conversions that they produce
are shown below.

0

1

2

3

R

Di: 0011

S

S + 1
0

1

2

3

S

S + 1

S + 2

S + 3

Di: 0030

R

S

S + 1

S + 2

S + 3

0

1

2

3

Di: 0032
R

Di: 0013

0

1

2

3

S

S + 1

R

Digit Designator

���� �	������	� Section 5-14

�(4

Flags ER: Undefined digit designator, or S plus number of digits exceeds a data
area.

Content of a source word is 0.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

When 00000 is ON, the following diagram encodes IR words 010 and 011 to
the first two digits of HR 20 and then encodes LR 10 and 11 to the last two
digits of HR 20. Although the status of each source word bit is not shown, it is
assumed that the bit with status 1 (ON) shown is the highest bit that is ON in
the word.

00000
DMPX(77)

010

HR 20

#0010

LR 10

HR 20

#0012

IR 010

01000

:

01011 0

01012 0

: :

01015 0

LR 10

LR 1000

LR 1001 1

LR 1002 0

: :

: :

LR 1015 0

Digit 0

IR 011

01100

:

01109 1

01110 0

: :

01115 0

Digit 1

Digit 2

Digit 3

B

9

1

8
LR 11

LR 1100

:

LR 1108 1

LR 1109 0

: :

LR 1115 0

HR 20

DMPX(77)

Address Instruction Operands

00000 LD 00000
00001 DMPX(77)

010

HR 20

0010
00002 DMPX(77)

LR 10

HR 20
0012

5-14-8 ASCII CONVERT -- ASC(86)

S: Source word

IR, SR, AR, DM, HR, TC, LR

Di: Digit designator

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

D: First destination word

IR, AR, DM, HR, LR

ASC(86)

S

Di

D

@ASC(86)

S

Di

D

Di must be within the values given in the following.

All destination words must be in the same data area.

Example

Limitations

���� �	������	� Section 5-14

�(�

When the execution condition is OFF, ASC(86) is not executed. When the
execution condition is ON, ASC(86) converts the designated digit(s) of S into
the equivalent 8-bit ASCII code and places it into the destination word(s) be-
ginning with D.

Any or all of the digits in S may be converted in order from the designated
first digit. The first digit, the number of digits to be converted, and the half of
D to receive the first ASCII code (rightmost or leftmost 8 bits) are designated
in Di. If multiple digits are designated, they will be placed in order starting
from the designated half of D, each requiring two digits. If more digits are
designated than remain in S (counting from the designated first digit), further
digits will be used starting back at the beginning of S.

Refer to Appendix I for a table of extended ASCII characters.

The digits of Di are set as shown below.

Specifies the first digit to be converted (0 to 3).

Number of digits to be converted (0 to 3).
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

First half of D to be used.
0: Rightmost 8 bits (1st half)
1: Leftmost 8 bits (2nd half)

Parity 0: none,
1: even,
2: odd

Digit number: 3 2 1 0

Some examples of Di values and the 4-bit binary to 8-bit ASCII conversions
that they produce are shown below.

0

1

2

3

S

Di: 0011

D

0

1

2

3

Di: 0030

S

0

1

2

3

Di: 0130
S

Di: 0112

0

1

2

3

S

1st half

2nd half

D

1st half

2nd half

D+1

1st half

2nd half

D

1st half

2nd half

D+1

1st half

2nd half

D

1st half

2nd half

D+1

1st half

2nd half

D+2

1st half

2nd half

Description

Digit Designator

���� �	������	� Section 5-14

�(�

The leftmost bit of each 2-digit ASCII character can be automatically adjusted
for either even or odd parity. If no parity is designated, the leftmost bit will
always be zero.

When even parity is designated, the leftmost bit will be adjusted so that the
total number of ON bits is even, e.g., when adjusted for even parity, ASCII
“31” (00110001) will be “B1” (10110001: parity bit turned ON to create an
even number of ON bits); ASCII “36” (00110110) will be “36” (00110110: par-
ity bit turned OFF because the number of ON bits is already even). The sta-
tus of the parity bit does not affect the meaning of the ASCII code.

When odd parity is designated, the leftmost bit of each ASCII character will
be adjusted so that there is an odd number of ON bits.

Flags ER: Incorrect digit designator, or data area for destination exceeded.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

5-15 BCD Calculations
The BCD calculation instructions -- INC(38), DEC(39), ADD(30), SUB(31),
MUL(32), and DIV(33) -- all perform arithmetic operations on BCD data.

For INC(38) and DEC(39) the source and result words are the same. That is,
the content of the source word is overwritten with the instruction result. All
other instructions change only the content of the words in which results are
placed, i.e., the contents of source words are the same before and after ex-
ecution of any of the other BCD calculation instructions.

STC(40) and CLC(41), which set and clear the carry flag, are included in this
group because most of the BCD operations make use of the Carry Flag (CY)
in their results. Binary calculations and shift operations also use CY.

The addition and subtraction instructions include CY in the calculation as well
as in the result. Be sure to clear CY if its previous status is not required in the
calculation, and to use the result placed in CY, if required, before it is
changed by execution of any other instruction.

5-15-1 INCREMENT -- INC(38)

Wd: Increment word (BCD)

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

INC(38)

Wd

@INC(38)

Wd

When the execution condition is OFF, INC(38) is not executed. When the
execution condition is ON, INC(38) increments Wd, without affecting Carry
(CY).

Flags ER: Wd is not BCD

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result of the increment is 0.

Parity

Description

#�� ��
��
���	�� Section 5-15

�(�

5-15-2 DECREMENT -- DEC(39)

Wd: Decrement word (BCD)

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

DEC(39)

Wd

@DEC(39)

Wd

When the execution condition is OFF, DEC(39) is not executed. When the
execution condition is ON, DEC(39) decrements Wd, without affecting CY.
DEC(39) works the same way as INC(38) except that it decrements the value
instead of incrementing it.

Flags ER: Wd is not BCD

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the decremented result is 0.

5-15-3 SET CARRY -- STC(40)

Ladder Symbols

STC(40) @STC(40)

When the execution condition is OFF, STC(40) is not executed.When the ex-
ecution condition is ON, STC(40) turns ON CY (SR 25504).

5-15-4 CLEAR CARRY -- CLC(41)

Ladder Symbols

CLC(41) @CLC(41)

When the execution condition is OFF, CLC(41) is not executed.When the ex-
ecution condition is ON, CLC(41) turns OFF CY (SR 25504).

Description

#�� ��
��
���	�� Section 5-15

�(#

5-15-5 BCD ADD -- ADD(30)

Au : Augend word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Ad : Addend word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

ADD(30)

Au

Ad

R

@ADD(30)

Au

Ad

R

When the execution condition is OFF, ADD(30) is not executed. When the
execution condition is ON, ADD(30) adds the contents of Au, Ad, and CY,
and places the result in R. CY will be set if the result is greater than 9999.

Au + Ad + CY CY R

Flags ER: Au and/or Ad is not BCD.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

CY: ON when there is a carry in the result.

EQ: ON when the result is 0.

If 00002 is ON, the program represented by the following diagram clears CY
with CLC(41), adds the content of LR 25 to a constant (6103), places the re-
sult in DM 0100, and then moves either all zeros or 0001 into DM 0101 de-
pending on the status of CY (25504). This ensures that any carry from the
last digit is preserved in R+1 so that the entire result can be later handled as
eight-digit data.

TR 0

MOV(21)

#0001

DM 0101

00002
CLC(41)

ADD(30)

LR 25

#6103

DM 0100

MOV(21)

#0000

DM 0101

25504

25504

Address Instruction Operands

00000 LR 00002
00001 OUT TR 0

00002 CLC(41)
00003 ADD(30)

LR 25
6103

DM 0100
00004 AND 25504

00005 MOV(21)
0001

DM 0101
00006 LD TR 0

00007 AND NOT 25504
00008 MOV(21)

0000
DM 0101

Description

Example

#�� ��
��
���	�� Section 5-15

�('

5-15-6 BCD SUBTRACT -- SUB(31)

Mi: Minuend word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Su: Subtrahend word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

SUB(31)

Mi

Su

R

@SUB(31)

Mi

Su

R

When the execution condition is OFF, SUB(31) is not executed. When the
execution condition is ON, SUB(31) subtracts the contents of Su and CY
from Mi, and places the result in R. If the result is negative, CY is set and the
10’s complement of the actual result is placed in R. To convert the 10’s com-
plement to the true result, subtract the content of R from zero (see example
below).

Mi -- Su -- CY CY R

Flags ER: Mi and/or Su is not BCD.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

CY: ON when the result is negative, i.e., when Mi is less than Su plus CY.

EQ: ON when the result is 0.

Caution Be sure to clear the carry flag with CLC(41) before executing SUB(31) if its
previous status is not required, and check the status of CY after doing a sub-
traction with SUB(31). If CY is ON as a result of executing SUB(31) (i.e., if
the result is negative), the result is output as the 10’s complement of the true
answer. To convert the output result to the true value, subtract the value in R
from 0.

When 00002 is ON, the following ladder program clears CY, subtracts the
contents of DM 0100 and CY from the content of 010 and places the result in
HR 20.

If CY is set by executing SUB(31), the result in HR 20 is subtracted from zero
(note that CLC(41) is again required to obtain an accurate result), the result
is placed back in HR 20, and HR 2100 is turned ON to indicate a negative
result.

If CY is not set by executing SUB(31), the result is positive, the second sub-
traction is not performed, and HR 2100 is not turned ON. HR 2100 is pro-
grammed as a self-maintaining bit so that a change in the status of CY will
not turn it OFF when the program is recycled.

Description

Example 1: Subtraction of
4-digit Numbers

#�� ��
��
���	�� Section 5-15

�((

In this example, differentiated forms of SUB(31) are used so that the subtrac-
tion operation is performed only once each time 00002 is turned ON. When
another subtraction operation is to be performed, 00002 will need to be
turned OFF for at least one cycle (resetting HR 2100) and then turned back
ON.

CLC(41)

@SUB(31)

010

DM 0100

HR 20

CLC(41)

@SUB(31)

#0000

HR 20

HR 20

TR 0

25504
HR 2100

00002

25504

HR 2100

First
subtraction

Second
subtraction

Turned ON to indicate a
negative result.

00000 LD 00002

00001 OUT TR 0
00002 CLC(41)
00003 @SUB(31)

010

DM 0100
HR 20

00004 AND 25504

00005 CLC(41)

00006 @SUB(31)
0000
HR 20

HR 20
00007 LD TR 0

00008 AND 25504
00009 OR HR 2100

00010 OUT HR 2100

Address Instruction Operands

The first and second subtractions for this diagram are shown below using
example data for 010 and DM 0100.

Note The actual SUB(31) operation involves subtracting Su and CY from 10,000
plus Mi. For positive results the leftmost digit is truncated. For negative
results the 10s complement is obtained. The procedure for establishing the
correct answer is given below.

First Subtraction
IR 010 1029
DM 0100 -- 3452
CY -- 0

HR 20 7577 (1029 + (10000 -- 3452))
CY 1 (negative result)

Second Subtraction
0000

HR 20 --7577
CY --0

HR 20 2423 (0000 + (10000 -- 7577))
CY 1 (negative result)

In the above case, the program would turn ON HR 2100 to indicate that the
value held in HR 20 is negative.

In this example, the 8-digit content of DM 0100 and DM 0101 is subtracted
from the 8-digit content of 010 and 011 and the result is placed in HR 20, HR

Example 2: Subtraction of
8-digit Numbers

#�� ��
��
���	�� Section 5-15

�(�

21, and HR 22. (The content of HR 22 is set to #0001 to indicate a negative
result.)

CLC(41)

00002

SUB(31)

010

DM 0100

HR 20

SUB(31)

011

DM 0101

HR 21

CLC(41)

SUB(31)

#0000

HR 20

HR 20

SUB(31)

#0000

HR 21

HR 21

MOV(21)

#0001

HR 22

MOV(21)

#0000

HR 22

25504 (CY)

25504 (CY)

25504 (CY)

(1)

(2)

TR 0

(5)

(3)

(4)

1, 2, 3... 1. When 00002 is ON, CY is set to zero, the content of DM 0100 is sub-
tracted from the content of 010, and the result is placed in HR 20.

3 5 4 9

6 5 3 7

0--

7 0 1 2

3549 + (1000 -- 6537)

1

IR 010

DM 0100

CY Flag

HR 20

Set to 0 by
CLC(41).

CY Flag Set to 1 when the
result is negative.

--

#�� ��
��
���	�� Section 5-15

�(,

2. The content of DM 0101 and CY are then subtracted from the content of
011 and the result is placed in HR 21.

1 5 6 8

8 1 2 9

1

IR 011

DM 0101

CY Flag

3 4 3 8

HR 21

Set to 1 when the result of the
subtraction in step 1 is negative.

--

--

3. If the result of the subtraction in step 2 is negative, CY will be turned ON
and the result placed in HR 20 and HR 21 will be the 10’s complement
of the actual result. Here the 10’s complement of the 4 digits in HR 20 is
converted to the actual result.

#0000--7012=0000+(10000--7012)=2988
4. The 10’s complement of the 4 digits in HR 21 is converted to the actual

result. The 1 in the equation comes from the CY Flag set in step 3.
#0000--3438--1=0000+(10000--3438--1)=6561

5. HR 22 will contain #0001 if the result is negative and #0000 if the result
is positive. The final result is shown below.

0 0 0 1

HR 22

6 5 6 1

HR 21

2 9 8 8

HR 20

5-15-7 BCD MULTIPLY -- MUL(32)

Md: Multiplicand (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Mr: Multiplier (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR LR

MUL(32)

Md

Mr

R

@MUL(32)

Md

Mr

R

When the execution condition is OFF, MUL(32) is not executed. When the
execution condition is ON, MUL(32) multiplies Md by the content of Mr, and
places the result In R and R+1.

Md

Mr

R +1 R

X

Description

#�� ��
��
���	�� Section 5-15

�("

When IR 00000 is ON with the following program, the contents of IR 013 and
DM 0005 are multiplied and the result is placed in HR 07 and HR 08. Exam-
ple data and calculations are shown below the program.

MUL(32)

013

DM 0005

HR 07

00000

R+1: HR 08 R: HR 07
0 0 0 8 3 9 0 0

Md: IR 013
3 3 5 6

Mr: DM 0005
0 0 2 5

X

Address Instruction Operands

00000 LD 00000

00001 MUL(32)
013

DM 00005

HR 07

In this example, the 8-digit content of 010 and 011 is multiplied by the 8-digit
content of DM 0100 and DM 0101 and the result is placed in HR 00 to HR
03.

The letters in the table below are assigned to the 4 source words to make
later calculations easier to follow.

Letter Source word Contents

A IR 011 1234

B IR 010 5678

C DM 0101 8765

D DM 0100 4321

Example 1: Multiplication of
4-digit Numbers

Example 2: Multiplication of
8-digit Numbers

#�� ��
��
���	�� Section 5-15

��4

Fewer calculations and thus fewer instructions will be required if the multipli-
cation is rearranged as shown below:

(A×104+B) × (C×104+D) = A×C×104 + (B×C + A×D) × 104 + B×D

MUL(32)

010

DM 0100

HR 00

00003

TR 0

MUL(32)

011

DM 0101

HR 02

MUL(32)

010

DM 0101

128

MUL(32)

011

DM 0100

130

CLC(41)

ADD(30)

HR 01

128

HR 01

ADD(30)

HR 02

129

HR 02

ADD(30)

HR 03

#0000

HR 03

ADD(30)

HR 01

130

HR 01

ADD(30)

HR 02

131

HR 02

ADD(30)

HR 03

#0000

HR 03

(5)

(4)

(3)

(2)

(1)

#�� ��
��
���	�� Section 5-15

���

1, 2, 3... 1. The least significant 4-digits in each number are multiplied first (B×D).

5 6 7 8

4 3 2 1

IR 010

DM 0100

x

B

D

4 6 3 8

HR 00

2 4 5 3

HR 01

2. The most significant 4-digits in each number are multiplied (A×C).

1 2 3 4

8 7 6 5x

6 0 1 01 0 8 1

IR 011

DM 0101

A

C

HR 02HR 03

3. The least significant 4-digits of the first number are multiplied by the
most significant 4-digits of the second (B×C).

5 6 7 8

8 7 6 5x

7 6 7 04 9 7 6

IR 010

DM 0101

B

C

IR 128IR 129

4. The most significant 4-digits of the first number are multiplied by the
least significant 4-digits of the second (A×D).

1 2 3 4

4 3 2 1x

2 1 1 40 5 3 3

IR 011

DM 0100

A

D

IR 130IR 131

#�� ��
��
���	�� Section 5-15

���

5. The results of the multiplications in steps 1 to 4 are combined. The 104

terms and 108 terms are arranged in columns and added. The result of
addition in the 108-term column exceeds 9999, so the 1012 term is in-
cremented by 1.

1 0 8 1

HR 03

Result of step 3
multiplication (B×C).

0+ CY Flag

6 0 1 0

HR 02

2 4 5 3

HR 01

4 6 3 8

HR 00

4 9 7 6 7 6 7 0

IR 129 IR 128

0 5 3 3 2 1 1 4

IR 131 IR 130 Result of step 4
multiplication (A×D).

1+ CY Flag

1 0 8 2 1 5 2 0 2 2 3 7 4 6 3 8

HR 03 HR 02 HR 01 HR 00

x 1013 x 106 x 104 x 108

Result of step 1
multiplication (B×D).

Result of step 2
multiplication (A×C).

Flags ER: Md and/or Mr not BCD.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

CY: ON when there is a carry in the result.

EQ: ON when the result is 0.

5-15-8 BCD DIVIDE -- DIV(33)

Dd: Dividend word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbol

Dr: Divisor word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Operand Data Areas

DIV(33)

Dd

Dr

R

R: First result word (BCD)

IR, AR, DM, HR, LR

R and R+1 must be in the same data area.

When the execution condition is OFF, DIV(33) is not executed and the pro-
gram moves to the next instruction. When the execution condition is ON, Dd
is divided by Dr and the result is placed in R and R + 1: the quotient in R and
the remainder in R + 1.

R R+1

DdDr

Quotient Remainder

Limitations

Description

#�� ��
��
���	�� Section 5-15

���

Flags ER: Dd or Dr is not in BCD.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

When IR 00000 is ON with the following program, the content of IR 020 is
divided by the content of HR 09 and the result is placed in DM 0017 and DM
0018. Example data and calculations are shown below the program.

DIV(33)

020

HR 09

DM 0017

00000

R: DM 0017 R + 1: DM 0018
1 1 5 0 0 0 0 2

Dd: IR 020
3 4 5 2

Quotient Remainder

Dr: HR 09
0 0 0 3

Address Instruction Operands

00000 LD 00000
00001 DIV(33)

020
HR 09

DM 0017

Example 1: Division of
4-digit Numbers

#�� ��
��
���	�� Section 5-15

��#

In this example, the 8-digit content of HR 00 and HR 01 is divided by a 3-digit
number in HR 02, the quotient is placed in DM 0010 and DM 0011, and the
remainder is placed in DM 0012.

DIV(33)

HR 01

HR 02

HR 03

0000

DIV(33)

DM 0001

HR 02

HR 05

MUL(32)

HR 05

#1000

HR 13

MUL(32)

HR 07

#0100

DM 0002

DRW(35)

DM 0002

HR 13

HR 13

(5)

(4)

(3)

(2)

(1)

MOV(21)

HR 00

DM 0000

MOV(21)

HR 04

DM 0001

SLD(74)

DM 0000

DM 0001

DIV(33)

DM 0000

HR 02

HR 07

MOV(21)

HR 06

DM 0001

SLD(74)

DM 0000

DM 0001
(6)

(7)

DIV(33)

DM 0001

HR 02

HR 09

MUL(32)

HR 09

#0010

DM 0002

ORW(35)

HR 11

HR 13

HR 13

DRW(35)

DM 0002

HR 13

HR 13

(8)

MOV(21)

HR 08

DM 0001

SLD(74)

DM 0000

DM 0001

DIV(33)

DM 0001

HR 02

HR 11

MOV(21)

HR 10

DM 0001

SLD(74)

DM 0000

DM 0001

(9)

MOV(21)

HR 03

DM 0011

MOV(21)

HR 12

DM 0012

MOV(21)

HR 13

DM 0010

(*Continued.)

(*Continued above right.)

Example 2: Division of
8-digits by 3-digits

#�� ��
��
���	�� Section 5-15

��'

1, 2, 3... 1. The most significant 4-digits are divided first.

1 2 3 4

0 3 2 1/

0 0 0 3 0 2 7 1

HR 01

HR 02

HR 03 HR 04

2. The quotient is placed in DM 0000 and the remainder is placed in
DM 0001.

0 2 7 1 5 6 7 8

DM 0001 DM 0000

3. The 8 digits in DM 0000 and DM 0001 are shifted one digit to the left.

2 7 1 5 6 7 8 0

DM 0001 DM 0000

4. The fifth digit is divided, the quotient is placed in HR 05 and the remain-
der in HR 06.

2 7 1 5

0 3 2 1/

0 0 0 8 0 1 4 7

DM 0001

HR 02

HR 05 HR 06

5. The quotient is multiplied by 1000 and placed in HR 13.

8 0 0 0

HR 13

6. The sixth digit is divided in the same way, the quotient is placed in
HR 07 and the remainder in HR 08.

0 0 0 4 0 1 9 2

HR 07 HR 08

7. The quotient is multiplied by 100 and placed in DM 0002. DM 0002 is
logically ORed with HR 13 and the result is placed back in HR 13.

8 4 0 0

HR 13

#�� ��
��
���	�� Section 5-15

��(

8. The same calculations are carried out on the seventh and eighth digits,
and the results output to HR 13.

8 4 6 0 0 0 1 8

HR 13 HR 12

9. The contents of HR 03, HR 13, and HR 12 are transferred to DM 0011,
DM 0010, and DM 0012, respectively. The final result of the division has
the overall structure shown below.

1 2 3 4 5 6 7 8

0 3 2 1

HR 020

HR 01 HR 00

0 0 0 3 8 4 6 0

DM0011 DM0010

0 0 1 8

DM0012

/

Remainder:

#�� ��
��
���	�� Section 5-15

���

5-16 Binary Calculations
The binary calculation instructions -- ADB(50), SBB(51), MLB(52) and
DVB(53) -- all perform arithmetic operations on binary (hexadecimal) data.

The addition and subtraction instructions include CY in the calculation as well
as in the result. Be sure to clear CY if its previous status is not required in the
calculation, and to use the result placed in CY, if required, before it is
changed by the execution of any other instruction. STC(40) and CLC(41) can
be used to control CY. Refer to 5-15 BCD Calculations.

5-16-1 BINARY ADD -- ADB(50)

Au : Augend word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Ad : Addend word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

ADB(50)

Au

Ad

R

@ADB(50)

Au

Ad

R

When the execution condition is OFF, ADB(50) is not executed. When the
execution condition is ON, ADB(50) adds the contents of Au, Ad, and CY,
and places the result in R. CY will be set if the result is greater than FFFF.

Au + Ad + CY CY R

Flags ER: Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

CY: ON when the result is greater than FFFF.

EQ: ON when the result is 0.

Examples The following example shows a four-digit addition with CY used to place ei-
ther 0000 or 0001 into R+1 to ensure that any Carry is preserved.

CLC(41)

00000

ADB(50)

010

DM 0100

HR 10

MOV(21)

#0000

HR 11

MOV(21)

#0001

HR 11

TR 0

25504

25504

= R

= R+1

= R+1

Address Instruction Operands

00000 LD 00000

00001 OUT TR 0
00002 CLC(41)
00003 ADB(50)

010

DM 0100
HR 10

00004 AND NOT 25504

00005 MOV(21)

0000
HR 11

00006 LD TR 0

00007 AND 25504
00008 MOV(21)

00001
HR 11

Description

#����� ��
��
���	�� Section 5-16

��,

In the case below, A6E2 + 80C5 = 127A7. The result is a 5-digit number, so
CY (SR 25504) = 1, and the content of R + 1 becomes #0001.

R+1: HR 11 R: HR 10
0 0 0 1 2 7 A 7

Au: IR 010
A 6 E 2

Ad: DM 0100
8 0 C 5

+

The following example performs eight-digit addition by using ADB(50) twice.
ADB(50) is also used to place the carry into DM 0302 (one word greater than
the rest of the answer). The complete answer thus ends up in DM 0300
through DM 0302.

CLC(41)

00000

@ADB(50)

LR 20

DM 0200

DM 0300

@ADB(50)

LR 21

DM 0201

DM 0301

@ADB(50)

#0000

#0000

DM 0302

Address Instruction Operands

00000 LD 00000
00001 CLC(41)

00002 @ADB(50)
LR 20

DM 0200
DM 0300

00003 @ADB(50)
LR 21
DM 0201

DM 0301
00004 @ADB(50)

0000
0000

DM 0302

In the case below, 4F52A6E2 + EC3B80C5 = 13B8E27A7. The sum of the
addition of the lower 4 digits is a 5-digit number, so CY (SR 25504) = 1, and
the sum of the higher 4-digit addition is incremented by 1.

R: DM 0300
2 7 A 7

Au: LR 20
A 6 E 2

Ad: DM 0200
8 0 C 5

+

R: DM 0301
3 B 8 E

Au: LR 21
4 F 5 2

Ad: DM 0201
E C 3 B

+
CY = 1

Lower 4 digits. Higher 4 digits.

CY = 1

R+2: DM 0302 R+1: DM 0301 R: DM 0300
0 0 0 1 3 B 8 E 2 7 A 7

#����� ��
��
���	�� Section 5-16

��"

5-16-2 BINARY SUBTRACT -- SBB(51)

Mi: Minuend word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Su: Subtrahend word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

SBB(51)

Mi

Su

R

@SBB(51)

Mi

Su

R

When the execution condition is OFF, SBB(51) is not executed. When the
execution condition is ON, SBB(51) subtracts the contents of Su and CY from
Mi and places the result in R. If the result is negative, CY is set and the 2’s
complement of the actual result is placed in R.

Mi -- Su -- CY CY R

Flags ER: Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

CY: ON when the result is negative, i.e., when Mi is less than Su plus CY.

EQ: ON when the result is 0.

Description

#����� ��
��
���	�� Section 5-16

�,4

Example The following example shows eight-digit subtraction. CY is tested following
the first two subtractions to see if the result is negative. If it is, the first result
is subtracted from zero to obtain the true result, which is placed in HR 10 and
HR 11, and either 0000 or 0001 is placed in HR 12 (0001 indicates a nega-
tive answer).

CLC(41)

00000

SBB(51)

010

DM 0100

HR 10

MOV(21)

#0000

HR 12

MOV(21)

#0001

HR 12

TR 0

25504

25504

SBB(51)

011

DM 0101

HR 11

CLC(41)

25504

SBB(51)

#0000

HR 10

HR 10

SBB(51)

#0000

HR 11

HR 11

Address Instruction Operands

00000 LD 00000

00001 OUT TR 0
00002 CLC(41)

00003 SBB(51)
010

DM 0100
HR 10

00004 SBB(51)
011

DM 0101
HR 11

00005 AND 25504

00006 CLC(41)
00007 SBB(51)

0000
HR 10

HR 10
00008 SBB(51)

0000
HR 11

HR 11
00009 LD TR 0

00010 AND NOT 25504
00011 MOV(21)

0000
HR 12

00012 LD TR 0
00013 AND 25504
00014 MOV(21)

0001

HR 12

#����� ��
��
���	�� Section 5-16

�,�

In the case below, 20F55A10 -- B8A360E3 = 97AE06D3. In the the lower
4-digit subtraction, Su > Mi, so CY(SR 25504) becomes 1, and the result of
the higher 4-digit subtraction is decremented by 1. In the final calculations,
#0000 -- F9D2 = 0000 + (10000 -- F9D2) = 06D3.

#0000 -- 6851 --1 (from CY = 1) = 0000 + (10000 -- 6851 -- 1) = 97AE.
The content of HR 12, #0001, indicates a negative result.

R: HR 10
F 9 2 D

Mi: IR 010
5 A 1 0

Su: DM 0100
6 0 E 3

--

R: HR 11
6 8 5 1

Mi: IR 011
2 0 F 5

Su: DM 0101
B 8 A 3

--

CY = 1

Lower 4 digits. Higher 4 digits.

CY = 1

R+2: HR 12 R+1: HR 11 R: HR 10
0 0 0 1 9 7 A E 0 6 D 3

5A10 + (10000 -- 60E3)

-- 0 0 0 10 0 0 0--
20F5 + (10000 -- B8A3) -- 1

CY = 0
(from CLC(41))

5-16-3 BINARY MULTIPLY -- MLB(52)

Md: Multiplicand word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Mr: Multiplier word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR LR

MLB(52)

Md

Mr

R

@MLB(52)

Md

Mr

R

When the execution condition is OFF, MLB(52) is not executed. When the
execution condition is ON, MLB(52) multiplies the content of Md by the con-
tents of Mr, places the rightmost four digits of the result in R, and places the
leftmost four digits in R+1.

Md

Mr

R +1 R

X

Flags ER: Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

Description

#����� ��
��
���	�� Section 5-16

�,�

5-16-4 BINARY DIVIDE -- DVB(53)

Dd: Dividend word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Dr: Divisor word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR LR

DVB(53)

Dd

Dr

R

@DVB(53)

Dd

Dr

R

When the execution condition is OFF, DVB(53) is not executed. When the
execution condition is ON, DVB(53) divides the content of Dd by the content
of Dr and the result is placed in R and R+1: the quotient in R, the remainder
in R+1.

DdDr

R R + 1

Quotient Remainder

Flags ER: Dr contains 0.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

5-17 Logic Instructions
The logic instructions -- COM(29), ANDW(34), ORW(35), XORW(36), and
XNRW(37) -- perform logic operations on word data.

5-17-1 COMPLEMENT -- COM(29)

Wd: Complement word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

COM(29)

Wd

@COM(29)

Wd

When the execution condition is OFF, COM(29) is not executed. When the
execution condition is ON, COM(29) clears all ON bits and sets all OFF bits
in Wd.

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

15 00

15 00

Original

Complement

Description

Description

Example

$	��� ���������	�� Section 5-17

�,�

Flags ER: Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

5-17-2 LOGICAL AND -- ANDW(34)

I1: Input 1

IR, SR, AR, DM, HR, TC, LR, #

I2: Input 2

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

ANDW(34)

I1

I2

R

@ANDW(34)

I1

I2

R

When the execution condition is OFF, ANDW(34) is not executed. When the
execution condition is ON, ANDW(34) logically AND’s the contents of I1 and
I2 bit-by-bit and places the result in R.

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

15 00

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

15 00

15 00

I1

I2

R

Flags ER: Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

5-17-3 LOGICAL OR -- ORW(35)

I1: Input 1

IR, SR, AR, DM, HR, TC, LR, #

I2: Input 2

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

ORW(35)

I1

I2

R

@ORW(35)

I1

I2

R

When the execution condition is OFF, ORW(35) is not executed. When the
execution condition is ON, ORW(35) logically OR’s the contents of I1 and I2
bit-by-bit and places the result in R.

Description

Example

Description

$	��� ���������	�� Section 5-17

�,#

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

15 00

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1

15 00

15 00

I1

I2

R

Flags ER: Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

5-17-4 EXCLUSIVE OR -- XORW(36)

I1: Input 1

IR, SR, AR, DM, HR, TC, LR, #

I2: Input 2

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

XORW(36)

I1

I2

R

@XORW(36)

I1

I2

R

When the execution condition is OFF, XORW(36) is not executed. When the
execution condition is ON, XORW(36) exclusively OR’s the contents of I1
and I2 bit-by-bit and places the result in R.

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

15 00

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

15 00

15 00

I1

I2

R

Flags ER: Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

Example

Description

Example

$	��� ���������	�� Section 5-17

�,'

5-17-5 EXCLUSIVE NOR -- XNRW(37)

I1: Input 1

IR, SR, AR, DM, HR, TC, LR, #

I2: Input 2

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

XNRW(37)

I1

I2

R

@XNRW(37)

I1

I2

R

When the execution condition is OFF, XNRW(37) is not executed. When the
execution condition is ON, XNRW(37) exclusively NOR’s the contents of I1
and I2 bit-by-bit and places the result in R.

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

15 00

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

15 00

15 00

I1

I2

R

Flags ER: Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

Description

$	��� ���������	�� Section 5-17

�,(

5-18 Subroutines
5-18-1 Overview

Subroutines break large control tasks into smaller ones and enable you to
reuse a given set of instructions. When the main program calls a subroutine,
control is transferred to the subroutine and the subroutine instructions are
executed. The instructions within a subroutine are written in the same way as
the main program code. When all the subroutine instructions have been exe-
cuted, control returns to the main program to the point just after the point
from which the subroutine was entered (unless otherwise specified in the
subroutine).

5-18-2 SUBROUTINE START and RETURN -- SBN(92)/RET(93)

N: Subroutine number

(00 to 49)

Ladder Symbols Operand Data Areas

SBN(92) N

RET(93)

Each subroutine number can be used in SBN(92) once only, i.e., up to 50
subroutines may be programmed.

SBN(92) is used to mark the beginning of a subroutine program; RET(93) is
used to mark the end. Each subroutine is identified with a subroutine number,
N, that is programmed as a definer for SBN(92). This same subroutine num-
ber is used in any SBS(91) that calls the subroutine (see 5-18-3 SUBROU-
TINE ENTER -- SBS(91)). No subroutine number is required with RET(93).

All subroutines must be programmed at the end of the main program. When
one or more subroutines have been programmed, the main program will be
executed up to the first SBN(92) before returning to address 00000 for the
next cycle. Subroutines will not be executed unless called by SBS(91).

END(01) must be placed at the end of the last subroutine program, i.e., after
the last RET(93). It is not required at any other point in the program. (Refer to
5-18-3 SUBROUTINE ENTER -- SBS(91) for further details.)

Precautions If SBN(92) is mistakenly placed in the main program, it will inhibit program
execution past that point, i.e., program execution will return to the beginning
when SBN(92) is encountered.

If either DIFU(13) or DIFU(14) is placed within a subroutine, the operand bit
will not be turned OFF until the next time the subroutine is executed, i.e., the
operand bit may stay ON longer than one cycle.

Flags There are no flags directly affected by these instructions.

5-18-3 SUBROUTINE ENTER -- SBS(91)

N: Subroutine number

(00 to 49)

Ladder Symbol Operand Data Areas

SBS(91) N

A subroutine can be executed by placing SBS(91) in the main program at the
point where the subroutine is desired. The subroutine number used in

Limitations

Description

Description

����	������ Section 5-18

�,�

SBS(91) indicates the desired subroutine. When SBS(91) is executed (i.e.,
when the execution condition for it is ON), the instructions between the
SBN(92) with the same subroutine number and the first RET(93) after it are
executed before execution returns to the instruction following the SBS(91)
that made the call.

SBS(91) 00

SBN(92) 00

RET(93)

END(01)

Main program

Subroutine

Main program

SBS(91) may be used as many times as desired in the program, i.e., the
same subroutine may be called from different places in the program).

SBS(91) may also be placed into a subroutine to shift program execution
from one subroutine to another, i.e., subroutines may be nested. When the
second subroutine has been completed (i.e., RET(93) has been reached),
program execution returns to the original subroutine which is then completed
before returning to the main program. Nesting of up to sixteen levels is possi-
ble. A subroutine cannot call itself, (e.g., SBS(91) 00 cannot be programmed
within the subroutine defined with SBN(92) 00). The following diagram illus-
trates two levels of nesting.

SBN(92) 10 SBN(92) 11 SBN(92) 12

SBS(91) 11

RET(93)

SBS(91) 10 SBS(91) 12

RET(93) RET(93)

����	������ Section 5-18

�,,

The following diagram illustrates program execution flow for various execu-
tion conditions for two SBS(91).

SBS(91) 00

SBS(91) 01

SBN(92) 00

RET(93)

SBN(92) 01

RET(93)

END(01)

Main
program

Subroutines

A

B

C

D

E

A

A

A

A

B

B

B

B

C

C

C

C

D

D

E

E

OFF execution conditions for
subroutines 00 and 01

ON execution condition for
subroutine 00 only

ON execution condition for
subroutine 01 only

ON execution conditions for
subroutines 00 and 01

Flags ER: A subroutine does not exist for the specified subroutine number.

A subroutine has called itself.

Subroutines have been nested to more than sixteen levels.

Caution SBS(91) will not be executed and the subroutine will not be called when ER
is ON.

����	������ Section 5-18

�,"

5-19 Step Instructions
The step instructions STEP(08) and SNXT(09) are used in conjunction to set
up breakpoints between sections in a large program so that the sections can
be executed as units and reset upon completion. A section of program will
usually be defined to correspond to an actual process in the application. (Re-
fer to the application examples later in this section.) A step is like normal pro-
gramming code, except that certain instructions (e.g. IL(02)/ILC(03),
JMP(04)/JME(05)) may not be included.

5-19-1 STEP DEFINE and STEP START--STEP(08)/SNXT(09)

B: Control bit

IR, AR, HR, LR

Ladder Symbols Definer Data Areas

STEP(08) B STEP(08)

B: Control bit

IR, AR, HR, LR

SNXT(09) B

Limitations All control bits must be in the same word and must be consecutive.

STEP(08) uses a control bit in the IR or HR areas to define the beginning of
a section of the program called a step. STEP(08) does not require an execu-
tion condition, i.e., its execution is controlled through the control bit. To start
execution of the step, SNXT(09) is used with the same control bit as used for
STEP(08). If SNXT(09) is executed with an ON execution condition, the step
with the same control bit is executed. If the execution condition is OFF, the
step is not executed. The SNXT(09) instruction must be written into the pro-
gram so that it is executed before the program reaches the step it starts. It
can be used at different locations before the step to control the step accord-
ing to two different execution conditions (see example 2, below). Any step in
the program that has not been started with SNXT(09) will not be executed.

Once SNXT(09) is used in the program, step execution will continue until
STEP(08) is executed without a control bit. STEP(08) without a control bit
must be preceded by SNXT(09) with a dummy control bit. The dummy con-
trol bit may be any unused IR or HR bit. It cannot be a control bit used in a
STEP(08).

Description

���� ���������	�� Section 5-19

�"4

Execution of a step is completed either by execution of the next SNXT(09) or
by turning OFF the control bit for the step (see example 3 below). When the
step is completed, all of the IR and HR bits in the step are turned OFF and all
timers in the step are reset to their SVs. Counters, shift registers, and bits
used in KEEP(11) maintain status. Two simple examples are shown below.

SNXT(09) LR 2000

STEP(08) LR 2000

00000

Step controlled by LR 2000

SNXT(09) LR 2001

STEP(08) LR 2001

00001

SNXT(09) LR 2002

STEP(08)

00002

Starts step execution

Ends step execution

1st step

2nd stepStep controlled by LR 2001

Address Instruction Operands Address Instruction Operands

00000 LD 00000
00001 SNXT(09) LR 2000

00002 STEP(08) LR 2000

Step controlled by LR 2000.

00100 LD 00001
00101 SNXT(09) LR 2001

00102 STEP(08) LR 2001

Step controlled by LR 2001.

00200 LD 00002
00201 SNXT(09) LR 2002

00202 STEP(08) ---

Steps can be programmed in consecutively. Each step must start with
STEP(08) and generally ends with SNXT(09) (see example 3, below, for an
exception). When steps are programmed in series, three types of execution
are possible: sequential, branching, or parallel. The execution conditions for,
and the positioning of, SNXT(09) determine how the steps are executed. The
three examples given below demonstrate these three types of step execu-
tion.

Interlocks, jumps, SBN(92), and END(01) cannot be used within step pro-
grams.

Bits used as control bits must not be used anywhere else in the program un-
less they are being used to control the operation of the step (see example 3,
below). All control bits must be in the same word and must be consecutive.

If IR or LR bits are used for control bits, their status will be lost during any
power interruption. If it is necessary to maintain status to resume execution
at the same step, HR bits must be used.

Precautions

���� ���������	�� Section 5-19

�"�

Flags 25407: Step Start Flag; turns ON for one cycle when STEP(08) is executed
and can be used to reset counters in steps as shown below if neces-
sary.

SNXT(09) 01000

CP

R

CNT 01

#0003

00000

00100

25407

STEP(08) 01000

1 cycle

25407

01000

Start

Address Instruction Operands Address Instruction Operands

00000 LD 00000

00001 SNXT(09) 01000
00002 STEP(08) 01000
00003 LD 00100

00004 LD 25407

00005 CNT 01
0003

Examples
The following three examples demonstrate the three types of execution con-
trol possible with step programming. Example 1 demonstrates sequential
execution; example 2, branching execution; and example 3, parallel execu-
tion.

The following process requires that three processes, loading, part installa-
tion, and inspection/discharge, be executed in sequence with each process
being reset before continuing on the the next process. Various sensors
(SW1, SW2, SW3, and SW4) are positioned to signal when processes are to
start and end.

SW 1

SW 2
SW 3

SW 4

Loading Part installation Inspection/discharge

Example 1:
Sequential Execution

���� ���������	�� Section 5-19

�"�

The following diagram demonstrates the flow of processing and the switches
that are used for execution control.

Process A

Process B

Process C

Loading

Part Installation

Inspection/discharge

SW1

SW2

SW3

SW4

The program for this process, shown below, utilizes the most basic type of
step programming: each step is completed by a unique SNXT(09) that starts
the next step. Each step starts when the switch that indicates the previous
step has been completed turns ON.

SNXT(09) 12800

00001 (SW1)

STEP(08) 12800

SNXT(09) 12801

STEP(08) 12801

SNXT(09) 12802

STEP(08) 12802

SNXT(09) 12803

STEP(08)

Process A

Process B

Process C

00002 (SW2)

00003 (SW3)

00004 (SW4)

Process A started.

Process A reset.
Process B started.

Process B reset.
Process C started.

Process C reset.

Address Instruction Operands Address Instruction Operands

00000 LD 00001
00001 SNXT(09) 12800
00002 STEP(08) 12800

Process A

00100 LD 00002

00101 SNXT(09) 12801
00102 STEP(08) 12801

Process B

00100 LD 00003

00101 SNXT(09) 12802

00102 STEP(08) 12802

Process C

00200 LD 00004

00201 SNXT(09) 12803
00202 STEP(08) ---

���� ���������	�� Section 5-19

�"�

The following process requires that a product is processed in one of two
ways, depending on its weight, before it is printed. The printing process is the
same regardless of which of the first processes is used. Various sensors are
positioned to signal when processes are to start and end.

SW A1 SW A2

SW B1 SW B2

Process CWeight scale

Process B

Process A

Printer
SW D

The following diagram demonstrates the flow of processing and the switches
that are used for execution control. Here, either process A or process B is
used depending on the status of SW A1 and SW B1.

Process A

Process C

End

SW A1 SW B1

SW A2 SW B2

SW D

Process B

Example 2:
Branching Execution

���� ���������	�� Section 5-19

�"#

The program for this process, shown below, starts with two SNXT(09) in-
structions that start processes A and B. Because of the way 00001 (SW A1)
and 00002 (SB B1) are programmed, only one of these will be executed to
start either process A or process B. Both of the steps for these processes
end with a SNXT(09) that starts the step for process C.

SNXT(09) HR 0001

00002 (SW B2)

STEP(08) HR 0000

SNXT(09) HR 0002

STEP(08) HR 0001

SNXT(09) HR 0002

STEP(08) HR 0002

SNXT(09) HR 0003

STEP(08)

Process A

Process B

Process C

00003 (SW A2)

00004 (SW B2)

00005 (SW D)

Process A started.

Process A reset.
Process C started.

Process B reset.
Process C started.

Process C reset.

00001 (SW A1)

SNXT(09) HR 0000

00002 (SW B2)

00001 (SW A1)

Address Instruction Operands Address Instruction Operands

00000 LD 00001
00001 AND NOT 00002

00002 SNXT(09) HR 0000
00003 LD NOT 00001

00004 AND 00002
00005 SNXT(09) HR 0001

00006 STEP(08) HR 0000

Process A

00100 LD 00003
00101 SNXT(09) HR 0002
00102 STEP(08) HR 0001

Process B

00100 LD 00004

00101 SNXT(09) HR 0002
00102 STEP(08) HR 0002

Process C

00200 LD 00005

00201 SNXT(09) HR 0003
00202 STEP(08) ---

���� ���������	�� Section 5-19

�"'

The following process requires that two parts of a product pass simultane-
ously through two processes each before they are joined together in a fifth
process. Various sensors are positioned to signal when processes are to
start and end.

Process C

SW1

SW2

Process A
SW3

SW4

Process D

Process B

Process E

SW6

SW5 SW7

The following diagram demonstrates the flow of processing and the switches
that are used for execution control. Here, process A and process C are
started together. When process A finishes, process B starts; when process C
finishes, process D starts. When both processes B and D have finished,
process E starts.

Process A

Process E

End

Process C

SW7

Process B Process D

SW3 SW4

SW 1 and SW2 both ON

SW5 and SW6 both ON

The program for this operation, shown below, starts with two SNXT(09) in-
structions that start processes A and C. These instructions branch from the
same instruction line and are always executed together, starting steps for
both A and C. When the steps for both A and C have finished, the steps for
process B and D begin immediately.

When both process B and process D have finished (i.e., when SW5 and SW6
turn ON), processes B and D are reset together by the SNXT(09) at the end
of the programming for process B. Although there is no SNXT(09) at the end
of process D, the control bit for it is turned OFF by executing SNXT(09) LR
0004. This is because the OUT for LR 0003 is in the step reset by SNXT(09)
LR 0004, i.e., LR 003 is turned OFF when SNXT(09) LR 0004 is executed

Example 3:
Parallel Execution

���� ���������	�� Section 5-19

�"(

Process B is thus reset directly and process D is reset indirectly before exe-
cuting the step for process E.

STEP(08) LR 0000

SNXT(09) LR 0001

STEP(08) LR 0001

STEP(08) LR 0004

SNXT(09) LR 0005

STEP(08)

Process A

Process B

Process C

00002 (SW3)

00005 (SW7)

Process A started.

Process A reset.
Process B started.

Process E reset.

00001 (SW1 and SW2))

SNXT(09) LR 0000

SNXT(09) LR 0002

Process C started.

01101

SNXT(09) LR 0004

00004 (SW5 and SW6)

LR 0003

STEP(08) LR 0002

Process E started.

Used to
turn off
process D.

00003 (SW4)

SNXT(09) LR 0003

STEP(08) LR 0003

Process C reset.
Process D started.

Process D

Process E

���� ���������	�� Section 5-19

�"�

Address Instruction Operands Address Instruction Operands

00000 LD 00001
00001 SNXT(09) LR 0000

00002 SNXT(09) LR 0002
00003 STEP(08) LR 0000

Process A

00100 LD 00002
00101 SNXT(09) LR 0001

00102 STEP(08) LR 0001

Process B

00100 LD 01101

00101 OUT LR 0003
00101 AND 00004
00101 SNXT(09) LR 0004

00102 STEP(08) LR 0002

Process C

00200 LD 00003
00201 SNXT(09) LR 0003

00202 STEP(08) LR 0003

Process D

00300 STEP(08) LR 0004

Process E

00400 LD 00005
00401 SNXT(09) LR 0005
00402 STEP(08) ---

5-20 Special Instructions
The instructions in this section are used for various operations, including pro-
gramming user error codes and messages, counting ON bits, setting the
watchdog timer, and refreshing I/O during program execution.

5-20-1 FAILURE ALARM -- FAL(06) and
SEVERE FAILURE ALARM -- FALS(07)

N: FAL number

(00 to 99)

Ladder Symbols Definer Data Areas

@FAL(06) NFAL(06) N

N: FAL number

(01 to 99)
FALS(07) N

FAL(06) and FALS(07) are provided so that the programmer can output error
numbers for use in operation, maintenance, and debugging. When executed
with an ON execution condition, either of these instruction will output a FAL
number to bits 00 to 07 of SR 253. The FAL number that is output can be
between 01 and 99 and is input as the definer for FAL(06) or FALS(07).
FAL(06) with a definer of 00 is used to reset this area (see below).

25307 25300

X101 X100

FAL Area

Description

������
 ���������	�� Section 5-20

�",

When FAL(06) is executed with an ON execution condition, the warning indi-
cator on the front of the CPU will light, but PC operation will continue. When
FALS(07) is executed with an ON execution condition, the alarm indicator will
light and PC operation will stop.

The system also generates error codes to the FAL area.

A maximum of three FAL error codes will be retained in memory, although
only one of these is available in the FAL area. To access the other FAL
codes, reset the FAL area by executing FAL(06) 00. Each time FAL(06) 00 is
executed, another FAL error will be moved to the FAL area, clearing the one
that is already there.

FAL(06) 00 is also used to clear messages programmed with the instruction,
MSG(46).

If the FAL area cannot be cleared, as is generally the case when FALS(07) is
executed, first remove the cause of the error and then clear the FAL area
through the Programming Console (see 7-1 Displaying and Clearing Error
Messages).

5-20-2 CYCLE TIME -- SCAN(18)

Mi: Multiplier (BCD)

IR, AR, DM, HR, TC, LR, #

---: Not used.

Ladder Symbols

Operand Data Areas

---: Not used.

SCAN(18)

Mi

@SCAN(18)

Mi

Limitations Only the rightmost three digits of Mi are used.

Description SCAN(18) is used to set a minimum cycle time. Mi is the minimum cycle time
that will be set in tenths of milliseconds, e.g., if Mi is 0120, the minimum cycle
time will be 12.0 ms. The possible setting range is from 0 to 999.9 millisec-
onds.

If the actual cycle time is less than the cycle time set with SCAN(18) the CPU
will wait until the designated time has elapsed before starting the next cycle.
If the actual cycle time is greater than the set time, the set time will be ig-
nored and the program will be executed to completion.

Flags ER: Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

Resetting Errors

������
 ���������	�� Section 5-20

�""

5-20-3 DISPLAY MESSAGE -- MSG(46)

FM: First message word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

MSG(46)

FM

@MSG(46)

FM

When executed with an ON execution condition, MSG(46) reads eight words
of extended ASCII code from FM to FM+7 and displays the message on the
Programming Console or on the GPC. The displayed message can be up to
16 characters long, i.e., each ASCII character code requires eight bits (two
digits). Refer to Appendix I for the extended ASCII codes. Japanese kataka-
na characters are included in this code.

If not all eight words are required for the message, it can be stopped at any
point by inputting “OD.” When OD is encountered in a message, no more
words will be read and the words that normally would be used for the mes-
sage can be used for other purposes.

Note If different messages are being used, some characters from longer mes-
sages will remain on the display when a shorter message is output. Input
spaces after shorter messages so that the messages are the same length
and all of the characters of the longer messages will be overwritten.

Up to three messages can be buffered in memory. Once stored in the buffer,
they are displayed on a first in, first out basis. Since it is possible that more
than three MSG(46)s may be executed within a single cycle, there is a prior-
ity scheme, based on the area where the messages are stored, for the selec-
tion of those messages to be buffered.

The priority of the data areas is as follows for message display:

LR > IR (I/O) > IR (not I/O) > HR > AR > DM

In handling messages from the same area, those with the lowest address
values have higher priority.

In handling indirectly addressed messages (i.e. BDM), those with the lowest
DM address values have higher priority.

To clear a message, execute FAL(06) 00 or clear it via a Programming Con-
sole using the procedure in 7-1 Displaying and Clearing Error Messages.

If the message data changes while the message is being displayed, the dis-
play will also change.

Flags ER: Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

Description

Message Buffering and
Priority

Clearing Messages

������
 ���������	�� Section 5-20

�,=

'4�%78=1);:�����

�44

The following example shows the display that would be produced for the in-
struction and data given when 00000 was ON. If 00001 goes ON, a message
will be cleared.

MSG(46)

DM 0010

FAL(06) 00

00000

00001

Address Instruction Operands

00000 LD 00000
00001 MSG(46)

DM 0010
00002 LD 00001

00003 FAL(06) 00

DM contents ASCII
equivalent

DM 0010 4 1 4 2 A B

DM 0011 4 3 4 4 C D

DM 0012 4 5 4 6 E F

DM 0013 4 7 4 8 G H

DM 0014 4 9 4 A I J

DM 0015 4 B 4 C K L

DM 0016 4 D 4 E M N

DM 0017 4 F 5 0 O P

5-20-4 LONG MESSAGE -- LMSG(47)

S: First source word (ASCII)

IR, AR, DM, HR, LR

D: Destination

(000, 001, or 002)

Ladder Symbols

Operand Data Areas

---: Not used.

LMSG(47)

S

D

@LMSG(47)

S

D

Limitations A maximum of 32 characters are permitted. S through S+15 must be in the
same data area and must be in ASCII code. The message data string is ter-
minated with a null character (00) placed in the S and S+15 range. The last
character before the null character must always be the ASCII code for a car-
riage return (0D).

Description LMSG(47) is used to output from 1 to 32 ASCII characters through either the
Programming Console or the built-in RS-232C port. The message to be out-
put must be in ASCII beginning in S and ending in S+15. The last character
in the message must be the ASCII code for a carriage return (0D) or the
message will not be sent. If a message shorter than 32 characters is desired,
placing a null character (00) after the carriage return (0D) will truncate the
message at that point. No characters after the null character will be output.

The destination of the message is designated in D. (Note that D appears to
be a word number address. However in this case it is not.) Provided that the
Programming Console is set to the TERMINAL mode (refer to 4-4-1 TERMI-
NAL and CONSOLE Mode for details), if D is 000, the output will be to the

Example

������
 ���������	�� Section 5-20

'4�%78=1);:�����

J�,�<9

�4�

Programming Console. Provided that the System Parameter for the RS-232C
port has been set to ASCII I/O mode (refer to 3-8-2 System DM and 3-5-11
System Command Bits), if D is 001, the output will be from the leftmost byte
through the serial port. If D is 002, the output will be from the rightmost byte
through the serial port. If neither TERMINAL nor ASCII mode is set, the in-
struction will still execute but no message data will appear.

When D is 001 or 002 all valid ASCII characters can be sent through the seri-
al port. Refer to Appendix I for ASCII codes.

Flags ER: S and S+15 are not in the same data area.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

The communications buffer of the RS-232C interface is being used
by another instruction.

Example The following example shows the display that would be produced for the in-
struction and data given when 00000 was ON with the Programming Console
in TERMINAL mode. In TERMINAL mode the screen is cleared by sending
two consecutive carriage return (0D) codes.

00000 Address Instruction Operands

00000 LD 00000

00001 LMSG(47)
DM 0000

000

000

LMSG(47)

DM 0000

000

000

DM contents ASCII
equivalent

DM 0000 4 1 4 2 A B

DM 0001 4 3 4 4 C D

DM 0002 4 5 4 6 E F

DM 0003 4 7 4 8 G H

DM 0004 4 9 4 A I J

DM 0005 4 B 4 C K L

DM 0006 4 D 4 E M N

DM 0007 4 F 5 0 O P

DM 0008 5 1 5 2 Q R

DM 0009 5 3 5 4 S T

DM 0010 5 5 5 6 U V

DM 0011 0 D 0 0 CR 0

������
 ���������	�� Section 5-20

�4�

5-20-5 SET SYSTEM -- SYS(49)

P: Parameters

#

---: Not used.

Operand Data Areas

---: Not used.

Ladder Symbols

SYS(49)

P

@SYS(49)

P

Limitations Only specific values are valid for P (see below).

SYS(49) has two functions; it can be used for bit control of certain operating
parameters, or to execute the same system commands that are possible
from the AR area. The contents bits 08 to 15 of P determine which function
SYS(49) will have.

Bit Control If bits 08 to 15 of P contain A3, SYS(49) is used to set system operating pa-
rameters. To be effective, it must be programmed at program address 00001
with LD AR 1001 at program address 00000.

1 1 0 0 0 0 0 1
7 6 5 4 3 2 1 0

1 0 1 0 0 0 1 1
15 14 13 12 11 10 9 8

A 3

Excludes battery
check from system
error checks.

Enables the I/O Status
Hold Bit (SR 25212).

Enables the Forced Sta-
tus Hold Bit (SR 25211).

Only bits 00, 06, and 07 are used. If bit 00 is 1, the battery check will be ex-
cluded from system error checks when PC power is turned ON. If bit 06 is 1,
the Forced Status Hold Bit (SR 25211) will be turned ON. If bit 07 is 1, the I/O
Status Hold Bit (SR 25212) will ensure that I/O bit status is maintained when
PC power is turned ON.

Description

������
 ���������	�� Section 5-20

�4�

System Commands If bits 08 to 15 of P contain 00, the system command indicated by the com-
mand code in bits 00 to 07 will be executed. As shown in the following table.

Command
code

Name Meaning

01 Parameter set The contents of the Parameter Area (DM 0900
to DM 0929) are set into the system, the value of
each parameter is checked for validity, all invalid
values are replaced with the default values, and
a checksum is generated.

02 Parameter backup The contents of the Parameter Area (DM 0900
to DM 0929) is transferred to the Parameter
Backup Area (DM 1900 to 1929), a checksum is
generated, the data in the Parameter Backup
Area is enabled, and AR 1314 (System
Parameter Backup Flag) is turned ON. Because
the Parameter Backup Area is contained in the
Memory Unit, parameter backup will not be
possible if the Memory Unit is write-protected or
EPROM.

03 Backup disable The data contained in the Parameter Backup
Area is disabled and AR 1314 (System
Parameter Backup Flag) is turned OFF.

04 Parameter clear All words in the Parameter Area (DM 0900 to
DM 0929) are turned OFF (i.e., set to zero).

05 General parameter
set

Works in the same way as 01, but only DM 0900
to DM 0905 are set.

06 High-speed counter
parameter set

Works in the same way as 01, but only DM 0905
to DM 0919 are set.

07 RS-232C
parameter set

Works in the same way as 01, but only DM 0920
to DM 0929 are set.

Flags ER: When bits 08 to 15 of P contain 00, bits 00 to 07 do not contain a
valid command code (00 to 07).

Example The following example shows how to change the RS-232C port from factory-
set mode to ASCII output mode.

00000

Address Instruction Operands

00000 LD 00000
00001 MOV(21)

0200
DM 0920

00002 SYS(49)
0007

000
000

MOV(21)

#0200

DM 0920

SYS(49)

#0007

000

000

������
 ���������	�� Section 5-20

�4#

5-20-6 KEY INPUT -- KEY(62)

S: First source word (key codes)

IR, AR, DM, HR, LR

---: Not used.

Ladder Symbols

Operand Data Areas

---: Not used.

KEY(62)

S

@KEY(62)

S

Limitations S and S+15 must be in the same data area and must contain key codes. SR
25503 must be OFF and a Programming Console must be mounted.

Description KEY(62) is used to perform Programming Console operations from within the
program. S designates the first word containing a key code. When KEY(62) is
executed with an ON execution condition, the key codes will produce the
same effect as pressing the equivalent Programming Console keys.

Key codes are executed from bits 08 to 15 first, then 00 to 07, then 08 to 15
of the next word, and so on. The key code string can be up to 16 words (i.e.,
32 key equivalents) in length, but can be ended at any point by inputting a
null code (00).

The Programming Console display can be reset to the initial display by input-
ting the reset code, 40.

Key codes are provided in Appendix J.

Flags ER: The key code string is not within the same data area.

A Programming Console is not attached.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

Example When IR 00000 is ON, the following instruction would produce the key se-
quence shown for the contents given below for the operand words. When this
instruction is executed, the ‘key sequence will display the current time of tim-
er TIM 511 onto the Peripheral Device (e.g., Programming Console or Data
Access Console).

KEY(62)

DM 1000

000

000

00000

DM 1000 0B 2B

DM 1001 1C 15

DM 1002 15 1A

DM 1003 00

08--15 00--07

Address Instruction Operands

00000 LD NOT 00000

00001 KEY(62)
DM 1000

000

000

������
 ���������	�� Section 5-20

�4'

5-20-7 RS-232C PORT OUTPUT -- POUT(63)

S: Source beginning word

IR, AR, DM, HR, TC, LR

C: Control number

(0000 or 0001)

Operand Data Areas

B: Number of bytes

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

POUT(63)

S

C

B

@POUT(63)

S

C

B

Limitations S through S+(B÷2)--1 must be within the same data area. C must be either
#0000 or #0001. B must be BCD between 0000 and 0200.

The RS-232C Mode in DM 0920 must be set to ASCII I/O mode.

Description When the execution condition is OFF, POUT(63) is not executed. When the
execution condition is ON, POUT(63) outputs the B bytes of data in S to
S+(B÷2)--1 through the RS-232C port. The control number, C, determines
whether the leftmost (C=#0000) or rightmost (C=#0001) bytes in the words
will be output first. Refer to Section 8 RS-232C Interface for details on the
operation of the interface.

Start and End Codes Bits 08 to 15 of DM 0925 specify whether or not there is a start code. If the
content of these bits is 01, the start code (contained in DM 0925 bits 00 to
07) will be output before the data. If the content of bits 08 to 15 of DM 0925 is
00, the start code won’t be output.

Likewise, bits 08 to 15 of DM 0926 specify whether or not there is an end
code. If the content of these bits is 01, the end code (contained in DM 0926
bits 00 to 07) will be output after the data. If the content of bits 08 to 15 of
DM 0926 is 00, the end code won’t be output.

POUT(63) will not be executed unless the Communications Enable Flag
(AR 0415) is ON. This flag will be ON if the RS-232C Mode in DM 0920 is set
to ASCII I/O mode and the communications buffer is empty. If AR 0415 is
OFF because the communications buffer is being used by LMSG(47) or
another POUT(63) instruction, it will be turned ON again when the buffer is
empty.

Precautions When the RS-232C is set to ASCII I/O mode in DM 0920, communications
are half duplex, so data cannot be received while POUT(63) is being ex-
ecuted and the reception buffer will be cleared when execution of POUT(63)
is completed.

Do not use the same code for both the start and end codes.

Flags ER: S and S+(B÷2)--1 aren’t in the same data area.

The POUT(63) instruction was executed while a LMSG(47) or
POUT(63) instruction was being executed.

The RS-232C interface is not set to ASCII I/O mode.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

Communications Enable
Flag

������
 ���������	�� Section 5-20

�4(

Example 1
When AR 0415 and 00000 are ON, the following program outputs the 46
characters of ASCII data in DM 0010 to DM 0032 through the RS-232C inter-
face.

@POUT(63)

DM 0010

#0000

#0046

AR 0415 Address Instruction Operands

00000 LD AR 0415
00001 AND 00000
00002 @POUT(63)

DM 0010

0000
0046

00000

Example 2
When more than one POUT(63) instruction is used in a program (to transmit
more than 200 bytes of data, for example), it is necessary to write the pro-
gram so that the instructions are executed consecutively. In this example, two
POUT(63) instructions are used.

@POUT(63)

00000 AR 0415 C

A

@POUT(63)

B

KEEP(11)
C

C

A

B

S

R

Example 3: Communication with an ID Controller
The POUT(63) instruction can be used to transmit commands and data to an
ID Controller. The OMRON products used in this example are listed below.

Name Model number

ID Controller V620-CA1A

Read/Write Head V620-H01

Data Carrier V620-D2KR01

Monitor Unit V600-P01

������
 ���������	�� Section 5-20

�4�

The PC is connected to the ID Controller with a 9-pin to 25-pin serial cable.
(The PC has a 9-pin RS-232C interface and the ID Controller has a 25-pin
RS-232C interface.) The following diagram shows the pin assignments and
cable connections.

FG

SD

RD

RS

CS

5V

1

2

3

4

5

6

Pin Signal Signal Pin

7

8

9

SG

--

--

FG

SD

RD

RS

CS

DSR

1

2

3

4

5

6

7

to

25

SG

to

--

After establishing the physical connection between the PC and ID Controller,
it is necessary to set the communications parameters. Set the communica-
tions parameters of the PC in the DM Area as shown below.

Word Setting

DM 0920 (DM 1920) 0201 (ASCII I/O mode)

DM 0921 (DM 1921) 0205 (9,600 bps, 8 data bits, 1 stop bit, no parity)

DM 0922 (DM 1922) 0000 (no transmission delay, no RTS/CTS control)

DM 0926 (DM 1926) 010D (end code = 0D)

Set the communications parameters of the ID Controller with the DIP switch
on the front of the Controller. Set the parameters for 9,600 bps, 1 start bit,
1 stop bit, 8 data bits, and no parity. Refer to the ID Controller’s System Man-
ual for details.

Setting Communications
Parameters

������
 ���������	�� Section 5-20

�4,

The data to be transmitted to the ID Controller is set in the PC’s memory. In
this example, the data and commands are set in the DM area as shown be-
low. Refer to Appendix I for the extended ASCII table.

DM0000 5 7 5 4 “WT” Write command header

DM0001 4 1 3 1 “AI” ASCII code, R/W Head 1

DM0002 3 0 3 0 “00”

DM0003 3 0 3 6 “06”

DM0004 0 0 0 0 Data to be written

DM0005 2 A 0 0 “� ”

DM0200 5 2 4 4 “RD” Read command header

DM0201 4 1 3 1 “AI” ASCII code, R/W Head 1

DM0202 3 0 3 0 “00”

DM0203 3 0 3 6 “06”

DM0204 3 0 3 2 “02” Number of bytes to be read

DM0205 2 A 0 0 “� ”

DM0400 4 3 5 5 “CU” Programming Console* display data

DM0401 5 2 5 2 “RR”

DM0402 4 5 4 E “EN”

DM0403 5 4 2 0 “T ”

DM0404 4 4 4 1 “DA”

DM0405 5 4 4 1 “TA”

DM0406 3 A 2 0 “ : ”

DM0407 0 0 0 0

DM0100

DM0101

DM0102

DM0300

DM0301

DM0302

DM0303

Beginning address (0006)

Beginning address (0006)

Write command response

Read command response

Note *Use the Programming Console in TERMINAL mode.

System Configuration

RS-232C

100 VAC

Mini H-type PC
100 VAC

24 VDC

Data Carrier

R/W Head 1

V620 ID Controller

Programming Console

DC Power Supply

RS-232C

Setting Data for
Transmission

������
 ���������	�� Section 5-20

�4"

Sample Ladder Program

4101

4101 4102

TR 0

4102

4103

4103 4104

DIFU(13) 4100

@PIN(64)

DM 100

#0000

#0005

4000 4104

@POUT(63)

DM 000

#0000

#0011

AR 4154100

4101 AR 414

CMP(20)

#3030

DM 101

4102 4103

FALS(07)

01

25506

@POUT(63)

DM 200

#0000

#0011

4102 AR 415

TR 0

4104

@PIN(64)

DM 300

#0000

#0007

4103 AR 414

CMP(20)

DM 004

DM 302

FALS(07)

02

25506

@ASC(86)

DM 004

#0012

DM 406

25506

@ASC(86)

DM 004

#0010

DM 407

LMSG(47)

DM 400

000

@INC(38)

DM 004

@MOV(21)

DM 004

002

END(01)

������
 ���������	�� Section 5-20

��4

Example 4: Communications between Mini H-type PCs
In this example, the POUT(63) and PIN(64) instructions are used to transfer
data between two PCs. The PCs are connected with a 25-pin to 25-pin serial
cable. Refer to 5-20-8 RS-232C PORT INPUT -- PIN(64) for details on
PIN(64). The following diagram shows the pin assignments and cable con-
nections.

Pin Signal Signal Pin

FG

SD

RD

RS

CS

5V

1

2

3

4

5

6

7

8

9

SG

--

--

FG

SD

RD

RS

CS

DSR

1

2

3

4

5

6

7

8

9

SG

--

--

PC #1 PC #2

Set the communications parameters of the PCs as shown below.

Word Setting

DM 0920 (DM 1920) 0200 (ASCII I/O mode, standard settings)

DM 0926 (DM 1926) 010D (end code = 0D)

Data Link Program The following ladder programs are used to change the content of a DM ad-
dress in PC #1 to agree with the corresponding DM address in PC #2.

To accomplish this, the DM address is transmitted from PC #1 to PC #2, the
content of the transmitted DM address is read in PC #2 and transmitted back
to PC#1, and the content of the corresponding DM address in PC #1 is then
changed to agree with the content of that address in PC #2.

Setting Communications
Parameters

������
 ���������	�� Section 5-20

���

The program below is written in PC #1.

PIN(64)

100

#0000

AR 06

MOV(21)

#0100

DM 0000

25315

DIFU(13)

05001

00001

ASC(86)

DM 0000

#0030

010

05001 AR 0415

POUT(63)

010

#0000

#0004

PIN(64)

100

#0000

AR 06

HEX(69)

100

#0030

�DM 0000

0001 AR 0414

END(01)

Clears the
communications buffer
(dummy input).

Sets the DM address
(0100) in DM 0000.

Converts the
transmission data to
ASCII code and outputs
the result to IR 010 and
IR 011.

Transmits the address
(in ASCII code) to
PC #2.

Places data received
from PC #2 in IR 100
and IR 101.

Converts the received
data from ASCII code
to hexadecimal and
outputs the result to the
same DM address.

������
 ���������	�� Section 5-20

���

The program below is written in PC #2.

Clears the
communications buffer
(dummy input).

Converts the content of
the specified DM
address to ASCII code
and outputs the result
to IR 010 and IR 011.

Transmits the contents
of the specified DM
address (in ASCII
code) to PC #1.

Places the DM address
received from PC #1 (in
ASCII code) in IR 100
and IR 101.

Converts the received
DM address from
ASCII code to
hexadecimal and
outputs the result to
DM 0000.

PIN(64)

100

#0000

AR 06

PIN(64)

100

#0000

AR 06

HEX(69)

100

#0030

DM 0000

ASC(86)

�DM 0000

#0030

010

POUT(63)

010

#0000

#0004

END(01)

25315

AR 0414

Example 4: Communications through a Modem
In this example, the POUT(63) and PIN(64) instructions are used to transfer
data to and from a modem. The PC is connected to the modem with a 9-pin
to 25-pin serial cable. The modem used in this example is the OMRON
MD24FP5V Intelligent Modem. Refer to 5-20-8 RS-232C PORT INPUT --
PIN(64) for details on PIN(64). The following diagram shows the pin assign-
ments and cable connections.

FG

SD

RD

RS

CS

SV

1

2

3

4

5

6

7

8

9

SG

--

--

FG

SD

RD

RS

CS

DSR

1

2

3

4

5

6

7

to

25

SG

to

--

C��H

Pin
no.

Abbr. Abbr. Pin
no.

Modem

������
 ���������	�� Section 5-20

���

The following cables and connectors are recommended for this example.

Cable
CO-MA-VV-SB 5PX28AWG (Hitachi)

Connectors
Mini H-type PC Hood: XM2A-0901 (OMRON)

Plug: XM2S-0911 (OMRON)
Modem Hood: XM2D-2501 (OMRON)

Plug: XM2S-2511 (OMRON)
Bracket: XM2Z-0001 (OMRON)

Modem Settings Place the following settings into the modem’s memory. Refer to the modem’s
operation manual for details.

Item Setting

ER (DTR) signal ER signal is ignored. Set to to remain ON. (Not supported
by PC.)

Command echo None

Result code Set to use as a numeric parameter.

S register S2 = 13 (carriage return) Although S2 is set to a carriage
return, you may have difficulties in operation if the carriage
return is also set to be treated as a character, e.g., when
using the fall-back character feature.

Breaking Communications The following procedure is used to break the communications line. This pro-
cedure is necessary because the PC does not support an ER signal.

Communications

Communications
stopped for 1 s
or longer

Escape processing
(carriage returns sent)

Communications
stopped for 1 s
or longer

Enters command mode

ATH executed

Line break AT command

Line broken

Communications Procedures The following procedures are used for transmission and reception. In either
case, NCU must be set to AA in the modem.

Transmission The phone number is output and then data is output after con-
nection of the communications line has been confirmed. A response of “1” is
returned to the PC when the line has been connected.

Reception When a request is received, connection of the communications
line is confirmed and data is received. A response of “2” is is returned to the
PC as a request for reception and a response of “1” is returned to the PC
when the line has been connected.

Set the communications parameters of the PCs as shown below.

Word Setting

DM 0920 (DM 1920) 0201 (ASCII I/O mode)

DM 0921 (DM 1921) 0203 (2,400 bps, 8 data bits, 1 stop bit, no parity)

DM 0922 (DM 1922) 0000 (no transmission delay, no RTS/CTS control)

DM 0926 (DM 1926) 010D (end code = 0D)

Cables and Connectors

Setting Communications
Parameters

������
 ���������	�� Section 5-20

��#

The following data is set in data memory.

Word Setting

DM 0200 ODOD (��)

DM 0210 4154 (AT)

DM 0211 4800 (H “null”)

DM 0220 4154 (AT)

DM 0221 4450 (DP)

DM 0222 to DM 0206 Phone number (in ASCII)

Data Link Program The following ladder program is used to transmit data from the PC through
the modem.

@PIN(64))

100

#0000

AR 06

00000

@MOV(21)

#0001

DM 0000

02000

00000 12803 02001

DIFU(13) 05000

02000

02000

PIN(64))

DM 0220

#0000

#0014

05000 AR 0415

02000 AR 0414

PIN(64))

DM 0300

#0000

AR 06

12803

ANDW(34)

DM 0300

#FF00

DM 0310

CMP(20)

DM 0310

#3100

12800

25506 (***)

“ATDPBBBBBBBBBB�”

Dial
Phone number

Carriage return code

Clears reception buffer.

Initializes reception buffer.

Outputs phone number

Received connection completer response

Confirms connection

Checks response code

Ends connections

Beginning of communications line connection

������
 ���������	�� Section 5-20

��'

02001

12800 02002

DIFU(13) 05001

ASC(86)

DM 0000

#0300

010

POUT(63))

010

#0000

#0004

PIN(64))

100

#0000

AR 06

HEX(69)

100

#0030

DM 0010

12001

12801 02003

02002

TIM
010

DIFU(13) 05002

POUT(63)

DM 0200

#0000

#0002

02002

02001

TIM
012

POUT(63))

DM 0210

#0000

#0003

02003

02001

05001 AR 0415

02001 AR 0414

02002

05002

TIM 010

#0015

#0015

AR 0415

TIM 012 AR 0415

Converts transmission data to ASCII

Transmits 4 bytes

Reads received data

Communications Completed Flag

Stops communications for 1.5 s

Outputs two carriage returns to switch mo-
dem to command mode (third carriage re-
turn provided by end code).

Outputs command to break line (ATH)

Converts received data to hexadecimal

Stops communications for 1.5 s

������
 ���������	�� Section 5-20

��(

5-20-8 RS-232C PORT INPUT -- PIN(64)

D: Destination beginning word

IR, SR, AR, DM, HR, TC, LR

C: Control number

(0000 or 0001)

Operand Data Areas

B: Number of bytes

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

PIN(64)

D

C

B

@PIN(64)

D

C

B

Limitations D through D+(B÷2)--1 must be within the same data area. C must be either
#0000 or #0001. B must be BCD between 0000 and 0200.

When the execution condition is OFF, PIN(64) is not executed. When the
execution condition is ON, PIN(64) writes B bytes of data received through
the RS-232C port to words beginning at D. If fewer than B bytes have been
received at the communications buffer, only those bytes received will be in-
put. The control number, C, determines whether the leftmost (C=#0000) or
rightmost (C=#0001) byte in the words was input first. Refer to Section 8
RS-232C Interface for details on the operation of the interface. Refer to
5-20-7 RS-232C PORT OUTPUT -- POUT(63) for examples.

RS-232C Bytes Input Area AR 08 contains the number of bytes of data (BCD) actually input to the PC by
PIN(64). The number of bytes input will vary depending on conditions when
the instruction is executed, as described below.

1, 2, 3... 1. If the number of bytes to input (operand B) is greater than or equal to the
number of bytes received (content of AR 06), the number of bytes received
will be input.

2. If B is less than the content of AR 06, B bytes will be input.

3. PIN(64) might be executed before the RS-232C Reception Completed Flag
(AR 0414) is turned ON. In this case, the number of bytes received would
equal the content of AR 06 just before execution. AR 06 would continue in-
creasing as more data was received after execution.

Start and End Codes Bits 08 to 15 of DM 0925 specify whether or not there is a start code. If the
content of these bits is 01, data following the start code will be input. If the
content of these bits is 00, all received data will be input.

Likewise, bits 08 to 15 of DM 0926 specify whether or not there is an end
code. If the content of these bits is 01, data up to the end code will be input.
If the content of bits 08 to 15 of DM 0926 is 00, data will be input until the
reception buffer is full (200 bytes). If no end code is specified, data should be
recorded as it arrives, before the reception buffer is full.

The number of bytes of data received through the RS-232C port (excluding
the start and end codes) is output to AR 06 every cycle. To input all of the
data received, use AR 06 as the number of bytes operand, B, when entering
the instruction.

Description

RS-232C Bytes Received
Area

������
 ���������	�� Section 5-20

���

Reception Completed Flag The Reception Completion Flag (AR 0414) is turned ON when the end code
is received or the reception buffer is full (200 bytes received). Data cannot be
received while this flag is ON. AR 0414 is turned OFF after PIN(64) has been
executed.

Reception Impossible Flag The RS-232C Reception Impossible Flag (AR 0413) is turned ON when newly
received data cannot be input. New data cannot be input if the previously re-
ceived data has not yet been input by PIN(64), or an error occurred during the
previous reception.

SR 25208 functions as the Communications Error Flag for both the RS-232C
Interface and the CPU-mounting Host Link Unit. It is turned ON when an er-
ror (a parity, overrun, or framing error) occurs during reception. This flag can
be can be turned OFF by toggling the RS-232C Restart Bit (SR 25209) or
executing PIN(64) with the number of bytes, B, equal to zero. SR 25209 also
functions as the Restart Bit for the CPU-mounting Host Link Unit.

Flags ER: D and D+(B÷2)--1 aren’t in the same data area.

The RS-232C interface is busy. (I.e., the RS-232C Transmission
Possible Flag (AR 0415) is OFF.)

The RS-232C interface is not set to ASCII I/O mode.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

Example When AR 0414 and 00000 are ON, the following program inputs all of the
characters received through the RS-232C interface (total number contained
in AR 06) beginning at DM 0010.

In this case, the instruction is executed when the Reception Completed Flag
(AR 0414) is ON, but the received data can also be input when AR 0414 is
OFF, i.e., when the end code has not been received and the reception buffer
is not full.

@PIN(64)

DM 0010

#0000

#0046

AR 0414 Address Instruction Operands

00000 LD AR 0415
00001 AND 00000
00002 @PIN(64)

DM 0010

0000
AR 46

00000

RS-232C Communications
Error Flag

������
 ���������	�� Section 5-20

��,

5-20-9 BIT COUNTER -- BCNT(67)

N: Number of words (BCD)

IR, AR, DM, HR, TC, LR, #

SB: Source beginning word

IR, SR, AR, DM, HR, TC, LR

Operand Data Areas

R: Destination word

IR, AR, DM, HR, TC, LR

Ladder Symbols

BCNT(67)

N

SB

R

@BCNT(67)

N

SB

R

Limitations N cannot be 0.

When the execution condition is OFF, BCNT(67) is not executed. When the
execution condition is ON, BCNT(67) counts the total number of bits that are
ON in all words between SB and SB+(N--1) and places the result in R.

Flags ER: N is not BCD, or N is 0; SB and SB+(N--1) are not in the same area.

The resulting count value exceeds 9999.

Indirectly addressed DM word is non-existent. (Content of BDM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

5-20-10 WATCHDOG TIMER REFRESH-- WDT(94)

T: Watchdog timer value

(00 to 63)

Ladder Symbols Definer Data Areas

@WDT(94) TWDT(94) T

When the execution condition is OFF, WDT(94) is not executed. When the
execution condition is ON, WDT(94) extends the setting of the watchdog tim-
er (normally set by the system to 130 ms) by 100 ms times T.

Timer extension = 100 ms x T.

Precautions If the cycle time is longer than the time set for the watchdog timer, 9F will be
output to the FAL area and the CPU will stop.

If the cycle time exceeds 6,500 ms, a FALS 9F will be generated and the sys-
tem will stop.

Timers might not function properly when the cycle time exceeds 100 ms.
When using WDT(94), the same timer should be repeated in the program at
intervals that are less than 100 ms apart.

Flags There are no flags affected by this instruction.

Description

Description

������
 ���������	�� Section 5-20

��"

5-20-11 I/O REFRESH -- IORF(97)

St: Starting word

IR (I/O word only)

Ladder Symbol

E: End word

IR (I/O word only)

Operand Data Areas

IORF(97)

St

E

This instruction is only effective for I/O words. IR 000 to IR 039 are allocated
to I/O Units.

St must be less than or equal to E.

When the execution condition is OFF, IORF(97) is not executed. When the
execution condition is ON, all words between St and E will be refreshed. This
will be in addition to the normal I/O refresh performed during the CPU’s cycle.

The execution time for IORF(97), TIORF, is computed as follows:
Inputs T = 600 µs + (70 µs x 2 x number of words refreshed)
Outputs T = 600 µs + (40 µs x 2 x number of words refreshed)

Flags There are no flags affected by this instruction.

Limitations

Description

Execution Time

������
 ���������	�� Section 5-20

���

��
�
�� (

&��%�� �)������� �� ��%

��� ����
 �� �#����� �"��# ���� ��� (� ���������� (� � ���� ��� ��
 #�� ��(�

��
 # "��
�#�
 ��� ��� ��?����� �

�/��� � �� "��
�#� #�� "������ � ��� ��< �"��# ���� �� ��"�� #� 5 #� �� �� ����
 �� �#�� ��
�#� �����
 �� � #�� ��#��

��
 �� �� �� ����� � #������ �� ������� ��� ��� #� ��� # �� ��
� ���
 ���� ��� ��� �/"�#��� �� ����� #�� ����� ���

 � �#����# � �� ����� ��� #��)2� ���"���� ����

)2� ���"���� ���� �� ���3 ,�� ��� #�� ������(�� �� �� ��������#� ,�� �� �#��#��
 ����� #�� ��� �� # �� ��� ��
���

���� � ������
�����

$�� ����� ���� 			

$�	 �#����# ��
 ����� ���� 		!

$��)�� ��� ��� 7/��� ��� ����� 		!

$��)2� ���"���� ���� 	�+

$�! 1�� ���3 ���"���� ���� 	��

���

6-1 Cycle Time
To aid in PC operation, the average, maximum, and minimum cycle times
can be displayed on the Programming Console or any other Programming
Device and the maximum cycle time and current cycle time values are held in
AR 26 and AR 27. Understanding the operations that occur during the cycle
and the elements that affect cycle time is essential to effective programming
and PC operations.

The major factors in determining program timing are the cycle time and the
I/O response time. One cycle of CPU operation is called a cycle; the time
required for one cycle is called the cycle time. The time required to produce a
control output signal following reception of an input signal is called the I/O
response time.

���
� ���� Section 6-1

���

The overall flow of CPU operation is as shown in the following flowchart.

YES

NO

YES

NO

Power application

Clear IR area and resets all timers

Check I/O Unit connections

Reset watchdog timer

Check hardware and Program Memory

Check OK?

Resets watchdog timer and program counter

Reset watchdog timer and adjust cycle time

Compute cycle time

End of program?

ERROR or ALARM?

Set error flags and activates indicators

Reset watchdog timer

Refresh input bits and output terminals

ERROR

ALARM

Execute user program

YES

NO
SCAN(18) executed?

Service RS-232C interface

Service host link commands for C200H (back-
plane-mounting model)

Initialization

Overseeing
processes

Program

Cycle time
processing

I/O refreshing

RS--232C
servicing

P
C

cy
cl

e

execution

Device
servicing

Host link
servicing

Service CPU-mounted devices

The first three operations, immediately after power application, are performed
only once each time the PC is turned on. The rest of the operations are per-
formed in cyclic fashion, with each cycle forming one cycle. The cycle time is

���
� ���� Section 6-1

��#

the time that is required for the CPU to complete one of these cycles. This
cycle includes basically seven operations.

The following table shows the breakdown of the PC cycle, time requirements,
and reasons for variations in the cycle time. The total cycle time will be the
sum of all the following.

Process Content Time requirements

Overseeing Resetting watchdog timer, I/O bus check,
UM check, refreshing clock

2.9 ms

Program execution Execution of user program Total time for executing all instructions
according to current execution conditions.
Varies with instructions used and
execution conditions. Refer to 6-3
Instruction Execution Times for details.

Cycle time adjustments Computation of cycle time and required
adjustment for SCAN(18)

Almost instantaneous (less than 1 ms) if
no adjustment is necessary.
Time required is determined by operand of
SCAN(18) if adjustment is necessary.

I/O refresh Output terminal status updated according to
output bit status and input bits status
updated according to input terminal status.

Inputs: 0.07 ms per 8 pts.

Outputs: 0.04 ms per 8 pts. (I/O Units with
12 outputs are treated as having 16 output
points).

RS-232C servicing Built-in RS-232C interface serviced. If not set in System DM, 5% of the
calculation cycle time will be used (but the
minimum time is 1 ms); otherwise, the
percentage set in System DM (between
0% and 99%) will be used. The minimum
servicing time is 0.2 ms even if System
DM is set to 0%.

Host link servicing Commands from host computer connected
to C200H Host Link Unit
(backplane-mounting model) serviced.

8 ms max.

Peripheral Device servicing Peripheral Devices connect to CPU
serviced (e.g., Programming Devices)

If not set in System DM, 5% of the
calculation cycle time will be used (but the
minimum time is 1 ms); otherwise, the
percentage set in System DM (between
0% and 99%) will be used. The minimum
servicing time is 0.2 ms even if System
DM is set to 0%.

Within the PC, the watchdog timer measures the cycle time and compares it
to a set value. If the cycle time exceeds the set value of the watchdog timer,
a FALS 9F error is generated and the CPU stops. WDT(94) can be used to
extend the set value for the watchdog timer.

Even if the cycle time does not exceed the set value of the watchdog timer, a
long cycle time can adversely affect the accuracy of system operations as
shown in the following table.

Cycle time (ms) Possible adverse affects

10 or greater TIMH(15) inaccurate when TC 016 through TC 511 are used.

20 or greater 0.02-second clock pulse not accurately readable.

100 or greater 0.1-second clock pulse not accurately readable and Cycle
Timer Error flag (25309) turns ON.

200 or greater 0.2-second clock pulse not accurately readable.

6,500 or greater FALS code 9F generated regardless of watchdog timer setting
and the system halts.

Watchdog Timer and Long
Cycle Times

���
� ���� Section 6-1

��'

6-2 Calculating Cycle Time
The PC configuration, the program, and program execution conditions must
be taken into consideration when calculating the cycle time. This means tak-
ing into account such things as the number of I/O points, the programming
instructions used, and whether or not peripheral devices are employed. This
section shows some basic cycle time calculation examples. To simplify the
example, the instructions used in the programs have been assumed to be all
either LD or OUT. The average execution time for the instructions is thus
0.94 µs. (Operating times are given in the table in Section 6-3.)

In this example, we’ll compute the cycle time for a C20H CPU. It is assumed
that the program contains 500 instructions requiring an average of 0.94 µs
each to execute.

The equation for the cycle time from above is given below. The portions not
required for this simple PC have been left out. It is assumed that there is no
adjustment to the cycle time.

Cycle time = overseeing time
+ execution time
+ I/O refresh time
+ RS-232C servicing time
+ peripheral device servicing time

In this example, as shown in the table below, the total cycle time is between
3.6 and 5.6 ms depending on RS-232C and Peripheral Device connections.

Process Calculation RS-232C and
Peripheral Device

not connected

RS-232C and
Peripheral Device
processing times

set to 5%*

RS-232C and
Peripheral Device
processing times

set to 0%*
Overseeing time Fixed 2.9 ms 2.9 ms 2.9 ms

Execution time 0.94 µs x 500 instructions 0.5 ms 0.5 ms 0.5 ms

I/O refresh time 0.07 ms x 2 + 0.04 ms x 1 0.2 ms 0.2 ms 0.2 ms

RS-232C servicing time Zero or percentage of
execution time

0 ms 1.0 ms 0.2 ms

Peripheral device servicing
time

Zero or percentage of
execution time

0 ms 1.0 ms 0.2 ms

Cycle time Total of above 3.6 ms 5.6 ms 4.0 ms
*If the servicing time for RS-232C and peripheral devices is set to 0%, the servicing time will be 0.2 ms and the response time will be ex-
tremely slow.

6-3 Instruction Execution Times
This following table lists the execution times for all instructions that are avail-
able for the C20H/C28H/C40H/C60H. The maximum and minimum execution
times and the conditions which cause them are given where relevant. When
“word” is referred to in the Conditions column, it implies the content of any
word except for indirectly addressed DM words. Indirectly addressed DM
words, which create longer execution times when used, are indicated by
“BDM.”

Execution times for most instructions depend on whether they are executed
with an ON or an OFF execution condition. Exceptions are the ladder dia-
gram instructions OUT and OUT NOT, which require the same time regard-
less of the execution condition. The OFF execution time for an instruction
can also vary depending on the circumstances, i.e., whether it is in an inter-
locked program section and the execution condition for IL is OFF, whether it
is between JMP(04) 00 and JME(05) 00 and the execution condition for
JMP(04) 00 is OFF, or whether it is reset by an OFF execution condition. “R,”
“IL,” and “JMP” are used to indicate these three times.

���������	�)!�����	� ����� Section 6-3

��(

Note: * The execution time is given in microseconds unless otherwise stated.

Table: Instruction Execution Times

Instruction Conditions ON execution time (µs)* OFF execution time (µs)*

LD --- 0.75 1.5

LD NOT --- 0.75 1.5

AND --- 0.75 1.5

AND NOT --- 0.75 1.5

OR --- 0.75 1.5

OR NOT --- 0.75 1.5

AND LD --- 0.75 1.5

OR LD --- 0.75 1.5

OUT --- 1.13 2.25

OUT NOT --- 1.13 2.25

TIM Constant for SV 2.25 R: 2.25

IL: 2.25

JMP: 2.25

=DM for SV R: 259

IL: 2.25

JMP: 2.25

CNT Constant for SV 2.25 R: 2.25

IL: 2.25

JMP: 2.25

=DM for SV R: 255

IL: 2.25

JMP: 2.25

NOP(00) --- 0.75 ---

END(01) --- 85 ---

IL(02) --- 32 35

ILC(03) --- 59 35

JMP(04) --- 35 35

JME(05) --- 45 35

FAL(06) FAL(06) 00 (reset) 357 2.25

FAL(06) 01 to 99 247 2.25

FALS(07) --- 11.1 ms 2.25

STEP(08) --- 364 2.25

SNXT(09) --- 22 2.25

SFT(10) With 1-word shift register 227 R: 191

IL: 30

JMP: 30

With 250-word shift register 8.06 ms R: 1.81 ms

IL: 30

JMP: 30

KEEP(11) --- 1.13 ---

CNTR(12) Constant for SV 107 R: 85

IL: 49

=DM for SV 265 JMP: 49

DIFU(13) --- 105 Normal: 93

IL: 93

JMP: 84

���������	�)!�����	� ����� Section 6-3

���

Note: * The execution time is given in microseconds unless otherwise stated.

Instruction OFF execution time (µs)*ON execution time (µs)*Conditions
DIFD(14) --- 104 Normal: 92

IL: 92

JMP: 84

TIMH(15) Interrupt, Constant for SV 149 R: 199

IL: 199

Normal cycle, Constant for SV 169 JMP: 73

Interrupt, =DM for SV 149 R: 291

IL: 291

Normal cycle, =DM for SV 169 JMP: 73

WSFT(16) When shifting 1 word 260 3

When shifting 1000 words using =DM 17.3 ms

RWS(17) When shifting 1 word 558 3.75

When shifting 1000 words using =DM 57.4 ms

SCAN(18) --- Cycle time set in
instruction -- actual cycle
time

3.75

CMP(20) When comparing a constant to a word 162 3

When comparing two =DM 447

MOV(21) When transferring a constant to a word 113 3

When transferring =DM to =DM 321

MVN(22) When transferring a constant to a word 115 3

When transferring =DM to =DM 392

BIN(23) When converting a word to a word 197 3

When converting =DM to =DM 465

BCD(24) When converting a word to a word 198 3

When converting =DM to =DM 451

ASL(25) When shifting a word 62 2.25

When shifting =DM 190

ASR(26) When shifting a word 62 2.25

When shifting =DM 190

ROL(27) When rotating a word 66 2.25

When rotating =DM 194

ROR(28) When rotating a word 66 2.25

When rotating =DM 194

COM(29) When inverting a word 379 2.25

When inverting =DM 506

ADD(30) Constant + word � word 166 3.75

=DM + =DM � =DM 593

SUB(31) Constant + word � word 192 3.75

=DM -- =DM � =DM 600

MUL(32) Constant x word � word 634 3.75

=DM x =DM � word 1045

DIV(33) Word ÷ constant � word 737 3.75

=DM ÷ =DM � =DM 1156

ANDW(34) Constant < word � word 162 3.75

=DM < =DM � =DM 557

ORW(35) Constant > word � word 162 3.75

=DM > =DM � =DM 560

XORW(36) Constant XORW word � word 162 3.75

=DM XORW =DM � =DM 560

���������	�)!�����	� ����� Section 6-3

��,

Note: * The execution time is given in microseconds unless otherwise stated.

Instruction OFF execution time (µs)*ON execution time (µs)*Conditions
XNRW(37) Constant XNRW word � word 163 3.75

=DM XNRW =DM � =DM 561

INC(38) When incrementing a word 79 2.25

When incrementing =DM 207

DEC(39) When decrementing a word 72 2.25

When decrementing =DM 260

STC(40) --- 21 1.5

CLC(41) --- 21 1.5

MSG(46) --- 88 2.25

LMSG(47) When outputting character string to
Programming Console from word

334 3.75

When outputting character string to
Programming Console set by =DM

414

When outputting character string to
RS-232C from word

751

When outputting character string to
RS-232C set by =DM

1679

SYS(49) When using command code 01. 1998 3.75

ADB(50) Constant + word � word 208 3.75

=DM + =DM � =DM 604

SBB(51) Constant -- word � word 208 3.75

=DM -- =DM � =DM 604

MLB(52) Constant x word � word 283 3.75

=DM x =DM � =DM 658

DVB(53) Word ÷ constant � word 516 3.75

=DM ÷ =DM � =DM 927

RDM(60) When comparing 1 range with words 719 719

When comparing max. ranges with =DM 18.0 ms 18.0 ms

HDM(61) When comparing 1 range with words 1079 3.75

When comparing max. ranges with =DM 18.5 ms

KEY(62) When using words 464 3.75

When using =DM 489

POUT(63) When outputting 0 bytes 464 3.75

When outputting 200 bytes of =DM 4.78 ms

PIN(64) When inputting 0 bytes 646 3.75

When inputting 200 bytes of =DM 4.95 ms

HTS(65) Word conversion 468 3.75

=DM conversion (converting max. time) 60.6 ms

STH(66) Word conversion 572 3.75

=DM conversion (converting max.
seconds)

175.3 ms

BCNT(67) When counting 1 word 531 3.75

When counting 1000 words using =DM 253.6 ms

BCMP(68) Comparing constant to word-designated
table

823 3.75

Comparing =DM � =DM-designated table 17 ms

HEX(69) Converting word to word 433 3.75

Converting =DM to =DM 1.20 ms

XFER(70) When transferring 1 word 433 3.75

When transferring 1000 words using =DM 47.1 ms

BSET(71) When setting a constant to 1 word 280 3.75

���������	�)!�����	� ����� Section 6-3

��"

Note: * The execution time is given in microseconds unless otherwise stated.

Instruction OFF execution time (µs)*ON execution time (µs)*Conditions
When setting =DM ms to 1,000 words
using =DM

1.56 ms

XCHG(73) Between words 215 3
Between =DM 408

SLD(74) Shifting 1 word 211 3
Shifting 1,000 words using =DM 25.3 ms

SRD(75) Shifting 1 word 208 3
Shifting 1,000 words using =DM 25.3 ms

MLPX(76) When decoding word to word 337 3.75
When decoding =DM to =DM 708

DMPX(77) When encoding a word to a word 404 3.75

When encoding =DM to =DM 758
MOVB (82) When transferring word to a word 172 3.75

When transferring =DM to =DM 557

MOVD(83) When transferring word to a word 210 3.75
When transferring =DM to =DM 459

SFTR(84) When shifting 1 word 475 3.75
When shifting 1000 DM words using =DM 18.7 ms

ASC(86) Word � word 385 3.75
=DM � =DM 746

SBS(91) --- 320 2.25
SBN(92) --- --- ---
RET(93) --- 207 1.5
WDT(94) --- 27 2.25
IORF(97) 1-word refresh 675 3

30-word refresh 4 ms

���������	�)!�����	� ����� Section 6-3

��4

6-4 I/O Response Time

The I/O response time is the time it takes for the PC to output a control signal
after it has received an input signal. The time it takes to respond depends on
the cycle time and when the CPU receives the input signal relative to the in-
put refresh period.

The minimum and maximum I/O response time calculations described below
are for where 00000 is the input bit that receives the signal and 00200 is the
output bit corresponding to the desired output point.

00000

00200

The PC responds most quickly when it receives an input signal just prior to
the input refresh period in the cycle. Once the input bit corresponding to the
signal has been turned ON, the program would have to be executed once to
turn ON the output bit for the desired output signal and then the input refresh
and overseeing operations would have to be repeated before the output re-
fresh operation refreshes the output bit. The I/O response time in this case is
thus found by adding the input ON-delay time, the cycle time (including the
I/O refresh times and the overseeing time), and the output ON-delay time.
This situation is illustrated below.

Cycle time

Input
signal

Output
signal

Cycle

Cycle time

Input refresh Output refresh

Overseeing

I/O response time

CPU reads
input signal

CPU writes
output signal

Output ON delayInput ON delay

Minimum I/O response time = input ON delay + cycle time + I/O refresh time
+ overseeing time + output ON delay

Minimum I/O Response
Time

�"
 ����	��� ���� Section 6-4

���

The PC takes longest to respond when it receives the input signal just after
the input refresh phase of the cycle. In this case the CPU does not recognize
the input signal until the end of the next cycle. The maximum response time
is thus one cycle longer than the minimum I/O response time, except that the
input refresh time would not need to be added in because the input comes
just after it rather than before it.

Input
signal

Output
signal

Cycle

Cycle time

Input refresh Output refresh

I/O response time

CPU reads
input signal

CPU writes
output signal

Input ON delay

Overseeing

Cycle time

Output ON delay

Maximum I/O response time = input ON delay + (cycle time x 2) + overseeing
time + output ON delay

The data in the following table would produce the minimum and maximum
cycle times shown calculated below.

Input ON-delay 1.5 ms

Cycle time 20 ms

Input refresh time 0.23 ms

Overseeing time 3.0 ms

Output ON-delay 15 ms

Minimum I/O response time = 1.5 + 20 + 0.23 + 3.0 +15 = 39.73 ms

Maximum I/O response time = 1.5 + (20 x 2) + 3.0 +15 = 59.5 ms

6-5 Host Link Response Time
The processing that determines and the methods for calculating the minimum
and maximum times required from an input on one PC in a Host Link System
to an output on another PC in the same Host Link System are described be-
low. The transfer between the PCs is handled through a host computer con-
nected to both these PCs. Although more precise equations may be written if
required, those used in the following calculations do not consider fractions of
a cycle.

In considering response times, it is important to remember the sequence of
processing that occurs during the PC cycle. The main factor that affects the
response time is the timing of inputs and outputs, the length of the transmis-
sion, and the time required for host computer processing.

Maximum I/O Response
Time

Calculation Example

6	�� $��' ����	��� ���� Section 6-5

���

The following diagram illustrates the setup used in response time calcula-
tions.

Host computer

PC PCCycle time
(50 ms)

Cycle time
(30 ms)

x +
Input

Output

The following equations are used to calculate the minimum and maximum
response times for the C20H/C28H/C40H/C60H. The maximum response
time is an approximation.

Minimum response time = Input ON delay + Command transmission time + (Cycle time of PC for Unit #0 x 2) + Response transmis-
sion time + Host computer processing time + Command transmission time + (Cycle time of PC for Unit #31
x 2) + Output ON delay

Maximum response time = Input ON delay + Command transmission time + (Cycle time of PC for Unit #0 x 10) + Response transmis-
sion time + Host computer processing time + Command transmission time + (Cycle time of PC for Unit #31
x 10) + Output ON delay

6	�� $��' ����	��� ���� Section 6-5

���

��
�
�� �

&��%�� *�+�%%��% ��� �)�������

���� ��� ��� "������� �� "��������� ��� ��(�

��
 # "��
�#�5 #�� ��� ���� ����
 #�� ��� ������
 �� �� ����
� # ����

�#����
 �������

)� ��� #�� ����
 # =��5 # 8)�5 �� # ���"� �� ������
 �,,5 ����� � ����������� ���
�� ��� "��������� �� ����

&�� %��"�#���
 #�� ���#���
 7���� ����#
�� 	��

&�	 ���� ����
 �"��# ��� #�� ��������
 %# # 	�!

&�	�� 4� 26��� ���� �� 	�$

&�	�	 8����� ,� 2���� 	�0

&�	�� 8����� ,� 2���� �#���� 	��

&�	�� 1�/#�����#�24�% %# # �������# ��� 	�	

&�	�! 1�/2',�)) %��"�#� ��#�
� 	��

&�	�$ ���
�#� 1�#��� %��"�#� 	��

&�	�& ������ ���� �� 	��

&�	�* ������ %# # �������# ��� 	�!

&�	�0 4��#�� ���� �� 	�$

&�	��+ 4��#�� %# # �������# ��� 	�&

&�	��� ��#�
��
 �����2���� �� ,9 	�0

&�	��	 ���� 6�� �� �"��# ���� 	!�

��#

7-1 Displaying and Clearing Error Messages
After inputting a program and correcting it for syntax errors, it must be exe-
cuted and all execution errors must be eliminated. Execution errors include
an excessively long cycle, errors in settings for various Units in the PC, and
inappropriate control actions, i.e., the program not doing what it is designed
to do.

If desired, the program can first be executed isolated from the actual control
system and wired to dummy inputs and outputs to check for certain types of
errors before actual trial operation with the controlled system.

When an error occurs during program execution, it can be displayed for iden-
tification by pressed CLR, FUN, and then MONTR. If an error message is
displayed, MONTR can be pressed to access any other error messages that
are stored by the system in memory. If MONTR is pressed in PROGRAM
mode, the error message will be cleared from memory. Be sure to write down
the error message when required before pressing MONTR. OK will be dis-
played when the last message has been cleared. This procedure can also be
used to clear messages produced by the program through MSG(46).

If a beeper sounds and the error cannot be cleared by pressing MONTR, the
cause of the error still exists and must be eliminated before the error mes-
sage can be cleared. If this happens, take the appropriate corrective action to
eliminate the error. Refer to Section 9 Troubleshooting for all details on all
error messages. The sequence in which error messages are displayed de-
pends on the priority levels of the errors. The messages for fatal errors (i.e.,
those that stop PC operation) are displayed before non-fatal ones.

Although error messages can be displayed in any mode, they can be cleared
only in PROGRAM mode. There is no way to restart the PC following a fatal
error without first clearing the error message in PROGRAM mode.

Key Sequence

����
����� ��% �
������)��	� �������� Section 7-1

��'

The following displays show some of the messages that may appear. Refer
to Section 9 Troubleshooting for an extensive list of error messages, their
meanings, and the appropriate responses.

Fatal
errors

All errors
have been
cleared

+++++

+++++

8<� -GG.

+++++7�� �1:

�:

�7���F 7��

�� 7�%)�,�

)2� 4<, 7��

,F, 8')� 8'�,

,F, 8')� 8'�

4'�� 7��

,�'� �)�7 �97�

Program-generated messages

+++++7�� �1:

�:

)2� <�)� �97�

Non-fatal

errors

7-2 Monitoring Operation and Modifying Data
The simplest form of operation monitoring is to display the address whose
operand bit status is to be monitored using the Program Read or one of the
search operations. As long as the operation is performed in RUN or MONI-
TOR mode, the status of any bit displayed will be indicated.

This section provides other procedures for monitoring data as well as proce-
dures for modifying data that already exists in a data area. Data that can be
modified includes the PV (present value) and SV (set value) for any timer or
counter.

Example

�	���	����
������	� ��% �	%������ ���� Section 7-2

��(

All monitor operations in this section can be performed in RUN, MONITOR,
or PROGRAM mode and can be cancelled by pressing CLR.

All data modification operations except for timer/counter SV changes are per-
formed after first preforming one of the monitor operations. Data modification
is possible in either MONITOR or PROGRAM mode, but cannot be per-
formed in RUN mode.

7-2-1 Bit/Word Monitor

The status of any bit or word in any data area can be monitored using the
following operation. Although the operation is possible in any mode, ON/OFF
status displays will be provided for bits in MONITOR or RUN mode only.

The Bit/Word Monitor operation can be entered either from a cleared display
by designating the first bit or word to be monitored or it can be entered from
any address in the program by displaying the bit or word address whose
status is to be monitored and pressing MONTR.

When a bit is monitored, it’s ON/OFF status will be displayed (in MONITOR
or RUN mode); when a word address is designated other than a timer or
counter, the digit contents of the word will be displayed; and when a timer or
counter number is designated, the PV of the timer will be displayed and a
small box will appear if the completion flag of a timer or counter is ON. When
multiple words are monitored, a caret will appear under the leftmost digit of
the address designation to help distinguish between different addresses. The
status of TR bits and SR flags (e.g., the arithmetic flags), cleared when
END(01) is executed, cannot be monitored.

Up to six memory addresses, either bits, words, or a combination of both,
can be monitored at once, although only three of these are displayed at any
one time. To monitor more than one address, return to the start of the proce-
dure and continue designating addresses. Monitoring of all designated ad-
dresses will be maintained unless more than six addresses are designated. If
more than six addresses are designated, the leftmost address of those being
monitored will be cancelled.

To display addresses that are being monitored but are not presently on the
Programming Console display, press MONTR without designating another
address. The addresses being monitored will be shifted to the right. As
MONTR is pressed, the addresses being monitored will continue shifting to
the right until the rightmost address is shifted back onto the display from the
left.

During a monitor operation the up and down keys can be pressed to incre-
ment and decrement the leftmost address on the display and CLR can be
pressed to cancel monitoring the leftmost address on the display. If the last
address is cancelled, the monitor operation will be cancelled. The monitor
operation can also be cancelled regardless of the number of addresses being
monitored by pressing SHIFT and then CLR.

LD and OUT can be used only to designate the first address to be displayed;
they cannot be used when an address is already being monitored.

�	���	����
������	� ��% �	%������ ���� Section 7-2

���

Key Sequence

Cancels moni-
tor operation

Clears leftmost

address

The following examples show various applications of this monitor operation.

Program Read then Monitor

Indicates Completion flag is ON

Monitor operation
is cancelled

++�++

++�++�7'%

�)� +++

�+++

�	��

�+++�

�++++

++�++

�)� ++�

Examples

�	���	����
������	� ��% �	%������ ���� Section 7-2

��,

Bit Monitor

+++++

+++++

�% ++++�

++++�

K ��

+++++

���� ++++�

Word Monitor

+++++

+++++

�1'��7� +++

+++++

�1'��7� �� +�

��+�

8888

��++

++++

�	���	����
������	� ��% �	%������ ���� Section 7-2

��"

Multiple Address Monitoring

+++++

+++++

�)� +++

�+++

+�++

+++++ �+++

+�++

++++� �+++

+�++

++++� �+++

K �88 +�++

%++++++++� �+++

K�88 +�++

%++++++++� �+++

�+88K �88 +�++

�+++%++++++++�

+�++ �+88K �88

%++++++++�

�+88K �88

++++�

K �88

+++++

���� ++++�

+++++

�1'��7� %� ++++

Cancels monitoring of

leftmost address

Monitor operation

canceled

7-2-2 Forced Set/Reset
When the Bit/Word Monitor operation is being performed and a bit, timer, or
counter address is leftmost on the display, PLAY/SET can be pressed to turn
ON the bit, start the timer, or increment the counter and REC/RESET can be
pressed to turn OFF the bit or reset the timer or counter. Timers will not oper-
ate in PROGRAM mode. SR bits cannot be turned ON and OFF with this op-
eration.

If you press PLAY/SET or REC/RESET alone (i.e., without SHIFT), then
Force Set/Reset will continue only as long as the key is held down. If you
press either of these with SHIFT, however, then the operation will continue
until cancelled with NOT.

�	���	����
������	� ��% �	%������ ���� Section 7-2

�#4

Without using NOT, the operation may be cancelled in any of the following
four ways:

• With the Restore Status operation

• With a PC mode change

• When operation halts due to an error

• When operation halts due to a power failure

This operation can be used in MONITOR mode to check wiring of outputs
from the PC prior to actual program execution. This operation cannot be
used in RUN mode.

Key Sequence

The following example shows how either bits or timers can be controlled with
the Force Set/Reset operation. The displays shown below are for the follow-
ing program section.

00002

TIM 000

00500

012.3 s

Address Instruction Operands

00200 LD 00002

00201 TIM 000
0123

00202 LD TIM 000

00203 OUT 00500

TIM 000

#0123

Example

�	���	����
������	� ��% �	%������ ���� Section 7-2

�#�

The following displays show what happens when TIM 000 is set with 00100
OFF (i.e., 00500 is turned ON) and what happens when TIM 000 is reset with
00100 ON (i.e., timer starts operation, turning OFF 00500, which is turned
back ON when the timer has finished counting down the SV).

(This example is in MONITOR mode.)

Monitoring

00100 and
00500.

Indicates that force set/reset is in progress.

Indicates that the time is up.

Monitoring

TIM 000.

Setting TIM 000
turns ON 00500.

Returns to the beginning
when the key is released.

Display with 0010 originally
ON.

Timer starts timing, turning
00500 OFF.*

When the time is up, 00500
goes ON again.

*Timing not done in PROGRAM mode.

++�++++!++

��88 K �88

�+++++�++++!++

K �88K �88

�+++++�++++!++

+�	�K �88K �88

�+++++�++++!++

�++++K �88K ��

�+++++�++++!++

+�	�K �88K �88

�+++++�++++!++

�++++K ��K ��

�+++++�++++!++

�+�	�K ��K �88

�+++++�++++!++

+�		K ��K �88

�+++++�++++!++

�++++K ��K ��

++�++++!++

K �88K �88

++�++++!++

� �� K �88

7-2-3 Forced Set/Reset Cancel
This operation restores the status of all bits in the I/O, IR, TIM, CNT, HR, AR,
or LR areas which have been force set or reset. It can be performed in PRO-
GRAM or MONITOR mode.

Key Sequence

When the PLAY/SET and REC/RESET keys are pressed, a beeper will
sound. If you mistakenly press the wrong key, then press CLR and start
again from the beginning.

�	���	����
������	� ��% �	%������ ���� Section 7-2

�#�

The following example shows the displays that appear when Restore Status
is carried out normally.

+++++

+++++

+++++8���7 �7�7G

+++++8���7 �7�7

7�%

7-2-4 Hexadecimal/BCD Data Modification
When the Bit/Word Monitor operation is being performed and a BCD or hexa-
decimal value is leftmost on the display, CHG can be input to change the
value. SR words cannot be changed.

If a timer or counter is leftmost on the display, the PV will be displayed and
will be the value changed. See 7-2-11 Changing Timer/Counter SV for the
procedure to change SV. PV can be changed in MONITOR mode only when
the timer or counter is operating.

To change contents of the leftmost word address, press CHG, input the de-
sired value, and press WRITE

Key Sequence

Word currently

monitored on
left of display.

[Data]

Example

�	���	����
������	� ��% �	%������ ���� Section 7-2

�#�

The following example shows the effects of changing the PV of a timer.

This example is in MONITOR mode

Timing

Timing

PV changed

Timing

Timing

+++++

+++++

�)� +++

�+++

+�		

+++++��7, 9'�G

�+++ +��0 GGGG

+++++��7, 9'�G

�+++ +�++ +	++

�+++

+�00

7-2-5 Hex/ASCII Display Change
This operation converts DM data displays back and forth between 4-digit
hexadecimal data and ASCII.

Key Sequence

Word currently
displayed.

Example

�	���	����
������	� ��% �	%������ ���� Section 7-2

�##

Example

+++++

+++++

�1 %� ++++

%++++

���	

%++++

L'4L

%++++

���	

7-2-6 Program Header Display
With this operation you can display the name of the program, along with the
version number and the time it was last revised (given in year, month, day,
hour, and minute).

When the SHIFT and MONITOR keys are pressed, the Programming Con-
sole displays the program name, version number, and so on, which have pre-
viously been stored in the DM System area. If the title/version enable (5A) in
DM 1990 is OFF, then asterisks will be displayed.

On models with a clock function, the revision time is generated automatically
whenever there is an insertion, deletion, or addition to the program, or when
memory is cleared or timer/counter SVs are set. For models without the clock
function, it is necessary to set the revision time.

For more detail, refer to 3-6 DM (Data Memory) Area.

Key Sequence

+++++

MBBBBBBBB 9B
B

*0�+0�	! �$>�!

7-2-7 3-word Monitor
To monitor three consecutive words together, specify the lowest numbered
word, press MONTR, and then press EXT to display the data contents of the
specified word and the two words that follow it.

A CLR entry changes the three-word monitor operation to a single-word dis-
play.

Example

�	���	����
������	� ��% �	%������ ���� Section 7-2

�#'

Key Sequence

Single Word monitor in progress

+++++

+++++

�1'��7� %� ++++

%++++

*0'4

%+++	%+++�%++++

+�	� �!$& *0'4

%+++�%+++	%+++�

'4�% +�	� �!$&

%+++�%+++�%+++	

78++ '4�% +�	�

%+++!%+++�%+++�

���� 78++ '4�%

%+++�%+++�%+++	

78++ '4�% +�	�

%+++	

+�	�

7-2-8 3-word Data Modification
This operation changes the contents of a word during the 3-word Monitor op-
eration. The blinking square indicates where the data can be changed. After
the new data value is keyed in, pressing WRITE causes the original data to
be overwritten with the new data. If CLR is pressed before WRITE, the
change operation will be cancelled and the previous 3-word Monitor opera-
tion will resume.

Key Sequence

3 words currently

displayed
[Data]

Example

�	���	����
������	� ��% �	%������ ���� Section 7-2

�#(

3-word monitor
in progress.

Stops in the middle
of monitoring.

Resumes previous
monitoring.

%+++	%+++�%++++

+�	� �!$& *0'4

%+++	 ��1�1'�=G

N+�	� �!$& *0'4

%+++	 ��1�1'�=G

N+++� �!$& *0'4

%+++	 ��1�1'�=G

+++�N�!$& *0'4

%+++	 ��1�1'�=G

+++�N	��! *0'4

%+++	%+++�%++++

+++� 	��! *0'4

%+++	%+++�%++++

+�	� �!$& *0'4

7-2-9 Binary Monitor
You can specify that the contents of a monitored word be displayed in binary
by pressing SHIFT and MONTR after the word address has been input.
Words can be successively monitored by using the up and down keys to in-
crement and decrement the displayed word address. To clear the binary dis-
play, press CLR.

Key Sequence

[Word]

Binary moni-
tor clear

All monitor
clear

Example

�	���	����
������	� ��% �	%������ ���� Section 7-2

�#�

+++++

+++++

�1'��7� +++

�+++ �����

++++++++++++����

�++� �����

+++++�+�+�+�+�++

+++++

�1'��7� ++�

+++++

+++++

�1'��7� %� ++++

%++++

8888

%++++ �����

����������������

%++++

8888

+++++

�1'��7� %� ++++

7-2-10 Binary Data Modification
This operation assigns a new 16-digit binary value to an IR, HR, AR, LR, or
DM word.

The blinking square, which can be shifted to the left with the up key and to
the right with the down key, indicates the position of the bit that can be
changed. After positioning to the desired bit, a 0 or a 1 can then be entered
as the new bit value. Besides 0 or 1, a change can be executed with SHIFT
and PLAY/SET or SHIFT and REC/RESET.

Example

�	���	����
������	� ��% �	%������ ���� Section 7-2

�#,

Forced Set and Forced Reset are indicated by S and R, and set at 1 and 0.
They are cancelled by NOT. (See Force Set/Reset Indicators in 7-2-1 Bit/
Word Monitor. After a bit value has been changed, the blinking square will
appear at the next position to the right of the changed bit.

Key Sequence

�	���	����
������	� ��% �	%������ ���� Section 7-2

�#"

IR bit 00115 IR bit 00100

+++++

+++++

�1'��7� +++

+++++

�1'��7� ++�

�++� �����

+++++�+�+�+�+�+�

�++� �1=G

�++++�+�+�+�+�+�

�++� �1=G

��+++�+�+�+�+�+�

�++� �1=G

�+�++�+�+�+�+�+�

�++� �1=G

�++�+�+�+�+�+�+�

�++� �1=G

�+++��+�+�+�+�+�

�++� �1=G

�+�++�+�+�+�+�+�

�++� �����

�++++�+�+�+�+�+�

�++� �1=G

�++�+�+�+�+�+�+�

7-2-11 Changing Timer/Counter SV
There are two ways to change the SV of a timer or counter. It can be done
either by inputting a new value; or by incrementing or decrementing the cur-
rent SV. Either method can be used only in MONITOR or PROGRAM mode.
In MONITOR mode, the SV can be changed while the program is being exe-
cuted. Incrementing and decrementing the SV is possible only when the SV
has been entered as a constant.

To use either method, first display the address of the timer or counter whose
SV is to be changed, presses the down key, and then press CHG. The new
value can then be input numerically and WRITE pressed to change the SV or
EXT can be pressed followed by the up and down keys to increment and
decrement the current SV. When the SV is incremented and/or decremented,
CLR can be pressed once to change the SV to the incremented or decre-
mented value but remaining in the display that appeared when EXT was
pressed or CLR can be pressed twice to return to the original display with the
new SV.

This operation can be used to change a SV from designation as a constant to
a word address designation and visa versa.

Example

�	���	����
������	� ��% �	%������ ���� Section 7-2

�'4

Key Sequence

The following examples show inputting a new constant, changing from a con-
stant to an address, and incrementing to a new constant.

Inputting New SV and
Changing to Word Designation

+++++

+++++

�)� +++

++	+�,��1

�)� +++

++	+� �)� %'�'

H+�	�

++	+� �)� %'�'

�+++ H+�	� HGGGG

++	+� �)� %'�'

�+++ H+�	� H+�	�

++	+� �)� %'�'

H+�	�

++	+� %'�'G

�+++ H+�	� �GGG

++	+� %'�'G

�+++ H+�	� �+�+

++	+� �)� %'�'

+�+

Example

�	���	����
������	� ��% �	%������ ���� Section 7-2

�'�

Returns to original display

with new SV

Current SV (during

change operation)
SV before the change

+++++

+++++

�)� +++

++	+�,��1

�)� +++

++	+� �)� %'�'

H+�	�

++	+� �)� %'�'

�+++ H+�	� HGGGG

++	+�%'�' G <2%

�+++ H+�	� H+�	�

++	+�%'�' G

�+++ H+�	� H+�		

++	+�%'�' G

�+++ H+�	� H+�	�

++	+�%'�' G

�+++ H+�	� H+�	�

++	+�%'�' G

�+++ H+�	� HGGGG

++	+� �)� %'�'

H+�	�

7-2-12 PROM Writer Operations
You can use the built-in RS-232C interface to download the Program Memory
and DM 1000 to DM 1999 to a commercially available PROM writer and to
upload the ROM contents of the PROM writer back to the PC.

For this operation you must set the RS-232C interface mode to download/
upload at both the PC and the PROM writer. (See 8-1 RS-232C Interface
Modes.) The PC must be in PROGRAM mode. Also, if a baud rate greater
than 2,400 bps is used, reception may not be normal unless a transmission
delay is used at the PROM writer.

For the transfer format, you can use either Intel’s HEX or Motorola’s S.

With the C20H/C28H/C40H, a cassette tape recorder cannot be connected
directly to the cassette jacks on the Programming Console, although it is pos-
sible to connect a cassette recorder to the GPC to store, retrieve, and verify
programs on tape.

The GPC not only allows programs to be stored and retrieved from tape, but
also allows programs written for the C120 and C500 PCs to be converted to
the format used with the C20H/C28H/C40H.

Incrementing and
Decrementing

�	���	����
������	� ��% �	%������ ���� Section 7-2

�'�

PC to PROM Writer
You can use the following key sequence to transfer Program Memory from
the PC to the PROM writer. Where BBBBBBBBB appears below, the transfer
format will be indicated as either Intel’s HEX or Motorola’s S. When writing to
27256 or 27128 chips, the first 8K bytes (0000 to 1FFF) are used.

Key Sequence

Start PROM writer
reception

Start PROM writer reception

Flashing

Completed normally or cancelled with CLR Key

+++++

+++++

<,7� �7� ���,87�

BBBBBBBBBBBB

<,7� �7� ���,87�

��'�,�)��)�=

<,7� �7� ���,87�

BBBBBBBBBBBB

Example

�	���	����
������	� ��% �	%������ ���� Section 7-2

�'�

PROM Writer to PC
You can use the following key sequence to transfer Program Memory from
the PROM writer to the PC. Where BBBBBBBBB appears below, the transfer
format will be indicated as either Intel’s HEX or Motorola’s S-Record.

Key Sequence

Start PROM writer
transmission

Start PROM writer transmission

Flashing

+++++

+++++

<,7� �7� ���,87�

BBBBBBBBBBBB

<,7� �7� ���,87�

�7�7)9)�=

Completed normally or cancelled with CLR Key

<,7� �7� ���,87�

BBBBBBBBBBBB

Intel’s HEX format is completely configured in ASCII characters. Except for
the start mark and the load address, it is expressed as two-digit hexadecimal
bytes of data. The format is as shown below.

: l l a a a a t t d d d d d d d d c c <CR> <LF>.

1
2 3 4 5 6 7

1, 2, 3... Start mark (:)
Indicates the start of a record.
Code number (two digits, hexadecimal)
Indicates the number of bytes in the record, from 01 to FF (1 to 255 by-
tes). If the code number is 00, it indicates the final record.
Load address (four digits, hexadecimal)
Indicates the address where the data is stored.
Record type (two digits, hexadecimal)
00 and 81 are recognized as data records, and the data beginning with
the load address is loaded to the buffer RAM. 01 is recognized as the
final record, and other types are ignored.
Data (two digits, hexadecimal)
This is the data which is stored in the buffer RAM. Addresses increase
one by one.
Checksum
This is the two’s complement of the total value of (2) through (5) after
they are added together in hexadecimal.The rightmost eight bits are val-
id.
Carriage return and line feed

Example

Intel’s HEX Format

�	���	����
������	� ��% �	%������ ���� Section 7-2

�'#

Motorola’s S-Record are completely configured in ASCII characters. Except
for the start mark, the record type and the load address, it is expressed as
two-digit hexadecimal bytes of data. The format is as shown below.

S t l l a a a a d d d d d d d d c c <CR> <LF>.

1
3 4 5 6

2
7

1, 2, 3... Start mark (S)
Indicates the start of a record.

Record type (0 to 9, excluding 4 and 6)
0: Ignored. Record type at output time is output as 1.
1: Ordinary data record, with 2-byte (4-character) load address
2: Ordinary data record, with 3-byte (6-character) load address
3: Ordinary data record, with 4-byte (8-character) load address
5: Ignored. Record type at output time is output as 1.
7: Indicates final type 3 record.
8: Indicates final type 2 record.
9: Indicates final type 1 record.

Code number (two digits, hexadecimal)
Indicates one half the total number of characters from (4) load address
to (6) checksum.

Load address (4, 6, or 8 digits, hexadecimal)
Indicates the address where the data is stored. When the load address
is 6 or 8, the rightmost four digits are valid.

Data (two digits, hexadecimal)
This is the data which is stored in the buffer RAM.

Checksum
This is the one’s complement of the total value of (3) through (5) after
they are added together in hexadecimal.The rightmost eight bits are val-
id.

Carriage return and line feed

The following table gives the probable causes and the procedures for cor-
recting errors which may occur during transmission between the PC and the
PROM writer.

Programming Console Message Probable Cause Correction

<,7� �7� ���,87�

�7�7)97 7��

Communication mode setting of
RS-232C interface does not match
that of PROM writer.

RS-232C cable connection is faulty.

PC reception is late.

Verify that the settings of the PC and
the PROM writer match the
specifications.

Check the Communications Counter
(AR 05) to see if the lines are
transmitting properly.

If there is a transmission delay at the
PROM writer, lower the baud rate or
insert a delay at the PROM writer.

Motorola’s S-Record

Transmission Error

�	���	����
������	� ��% �	%������ ���� Section 7-2

�''

��
�
�� ,

-�.���

����/���

��� �	+12�	*12��+12�$+1 �#�� # (��� ��� �,�	�	� �� ���#�� ����� #����� ��� � ������ ����� �� � # 1�� ���3

,�� ��5 # %��"�#� ������#�5 ��������#��� #�#��#(�� "��� ���5 #�� � ��� ������� ����� ��"��� #� �,�	�	� �� ���#��

���� ��� ��� ������(�� �����5 �� ��
�5 #�� "��������� ���� �� � �� �,�	�	� �� ���#��
 8�� ������# ��� �� �#���#��

������ ����5 �����
��# ���5 #�� ��� #��# ���5 ����� � ������ ������ ���� ����� �� �� �!��� �"�� ������������ 	
���

8�� ������# ��� �� ������ ����� ����� ����� ����
 ��� �� ���#�� �� # 1�� ���3 ,�� ��5 ����� �#�" ���� $��% &���� ����

������'
 8�� ������# ��� �� 1�� ���3 ,�� ��� ��������
 � ��� �������� ���5 ����� � ������ $��%
����(���
���

8�# �(�&"&, $��	����	 ���	� &45� �

8�& '� ��� �� ��	� (������ &45� �

8�" (� ��	� 3��� ��� 2���� &49� �

8�+ 0��� 1��! ,������������� .������� &49� �

8�+�# 3���! 2����� &49� �

8�+�& 3���! 2����� A��� ���	 7��� ��	 2���	 &5%� �

8�+�" '��� �	��	�	������� &5#� �

8�+�+ 2,(,���������� &5&� �

8�+�4 2,(,���������� .������ :����	 &5"� �

8�4 0��� 1��! ,������� ��� �	�����	� &5"� �

8�4�# 7 (7 &5+� �

8�4�& (7�7/(� �' &5+� �

8�4�" ���� � �' &54� �

8�4�+ $� �� � � �' &54� �

8�4�4 0� �� � � �' &55� �

8�4�5 �� �� � � �' &55� �

8�4�6 1� �� � � �' &56� �

8�4�8 7, (7�7/(� �' &56� �

8�4�9 '� �� � � �' &56� �

8�4�#% .> � �' &58� �

8�4�## (> � �' # &58� �

8�4�#& (> � �' & &59� �

8�4�#" (7�7/(A�$7 &59� �

8�4�#+ $� �� �A�$7 &6%� �

8�4�#4 0� �� �A�$7 &6%� �

8�4�#5 �� �� �A�$7 &6#� �

8�4�#6 1� �� �A�$7 &6#� �

8�4�#8 7, (7�7/(A�$7 &6#� �

8�4�#9 '� �� �A�$7 &6&� �

8�4�&% .> A�$7 &6&� �

8�4�&# (> ,0�
< # &6"� �

8�4�&& (> ,0�
< & &6"� �

8�4�&" 2��, ' (7 &6+� �

8�4�&+ 2��, ' � (7 &6+� �

8�4�&4 �/17$.1 2��, ' (7-� (7 &64� �

8�4�&5 �/17$.1 2��, ' (7-� (7 (7�7/(� �' &64� �

8�4�&6 2��, ' (7-� (7 ,�
, 1 &65� �

8�4�&8 ., ��' 1 � �' &65� �

8�4�&9 �3��7 ��� $
7�1$B &66� �

8�4�"% �	�����	 �� �� /��	���	� ,������ &66� �

8�4�"# �	�����	 $��������� �� /�����	��	� ,������ &68� �

8�4�"& .��<��� � �' &68� �

8�4�"" .��<���A�$7 &68� �

8�4�"+ $-� � <$(7 � &69� �

8�4�"4 $-� � �' &8%� �

8�4�"5 �	�����	 ,��	 1��� &8%� �

8�4�"6 ,������������� :����	� &8#� �

8�5 ,������ 1	
	�� &8"� �

�'(

8-1 RS-232C Interface Modes

You can use the RS-232C interface in any of three modes:

1, 2, 3... 1. Host Link Mode: Select this mode to connect to a Host Link System or
a FIT. For details, refer to 8-4 Host Link Communications Protocol and
8-5 Host Link Commands and Responses.

2. Download/Upload Mode: Select this mode to download the Program
Memory and DM 1000 to DM 1999 from the PC to a commercial PROM
writer and upload the ROM contents of the PROM writer back to the PC.
For the transfer format, you can use either Intel’s HEX or Motorola’s [S].
For details, refer to 7-2-12 PROM Writer Operations.

3. ASCII I/O Mode: ASCII I/O mode can be used to communicate from the
user program with external devices that are equipped with an RS-232C
interface. The following instructions can be used for 2-way half-duplex
communications in ASCII I/O mode: LONG MESSAGE -- LMSG(47),
RS-232C PORT OUTPUT -- POUT(63), and RS-232C PORT INPUT --
PIN(64). For hardware configurations, refer to the ����� �� �� �!���

�"�� ������������ 	
���.

The interface mode is set in System DM. Refer to DM 0920/DM 1920 in 3-6
DM (Data Memory) Area.

8-2 DM and AR Area Settings

Certain settings in the DM and AR areas are relevant to the RS-232C inter-
face. For information on these settings, refer to 3-5-3 Built-in Host Link Com-
munications Error Code, 3-5-4 RS-232C Interface Communications Count-
ers, and 3-8-2 System DM. With respect to these settings, the following
points should be noted:

DM Area The interface mode is set in DM 0920/DM1920, bits 08 to 15. Any setting oth-
er than 00, 01, or 02 is regarded as Host Link Mode.

With a setting in DM 0920/DM 1920, bits 00 to 07, you designate the commu-
nications format as standard or custom. If you designate it as standard, then
any baud rate or format settings in DM 0921/DM 1921 will be invalid. When
connecting to a FIT at a baud rate of 9,600 bps, it is most expedient to use
the standard format.

If you set the communications format to custom, then you can select a format
in DM 0921/DM 1921. When using the Host Link Mode, do not select a
no-parity format. Doing so may adversely affect the quality of the communi-
cations data.

You can set a transmission delay in DM 0922/DM 1922, bits 00 to 07. This
can be useful in cases where the receiving party has an overrun, but it will
slow down the transmission time. Always set these bits to 00 when connect-
ing to a Programming Device (e.g., FIT).

�� ��% �� ���� �������� Section 8-2

�'�

You can designate RS/CS control with a setting in DM 0922/DM1922, bits 08
to 15. Set this to “without RS/CS” when using RS-422 or in other cases
where RS/CS control is unnecessary. Do not use RS/CS control in Host link
or ASCII I/O mode. Communications will proceed as shown below with and
without RS/CS control.

RS/CS Host link Download/Upload ASCII I/O Mode

Yes

CS = ON

Yes

Transmit

RS OFF

RS ON

No

PC to PROM writer

CS ON?

Yes

RS OFF

Transmit

RS ON

No

PROM writer to PC

End of
transmission?

RS ON

RS ON

RS OFF

Transmit

No

RS ON

RS OFF

Transmit

PC to PROM writer

Transmit

PROM writer to PC

End of
transmission?

RS ON

RS OFF

Transmit

If bits 08 to 15 of DM 0925 are set to 01, the code set in bits 00 to 07 of DM
0925 will be used as the starting code for POUT(63) and PIN(64) transmis-
sions. If bits 08 to 15 are set to 00, no starting code will be used. If bits 08 to
15 of DM 0926 are set to 01, the code set in bits 00 to 07 of DM 0926 will be
used as the end code for POUT(63) and PIN(64) transmissions. If bits 08 to
15 are set to 00, no end code will be used. Refer to Section 5 Instruction Set
for details.

AR Area The following parts of the AR area are used with the RS-232C interface.

Word(s) Bit(s) Function

04 00 to 07 RS-232C Communications Error Code

13 RS-232C Reception Impossible Flag

14 RS-232C Reception Completed Flag

15 RS-232C Transmission Possible Flag

05 00 to 07 RS-232C Reception Counter

08 to 15 RS-232C Transmission Counter

06 00 to 15 RS-232C Bytes Received Area

08 00 to 15 RS-232C Bytes Input Area

�� ��% �� ���� �������� Section 8-2

�',

When an error has occurred in RS-232C communications, the RS-232C In-
terface Communications Error Flag is turned ON, and a code that indicates
the type of error is output to AR 0400 to AR 0407. These codes are in hexa-
decimal and are as follows:

00: Parity error
01: Framing error
02: Overrun error
03: FCS error

These bits are refreshed each cycle while using the RS-232C interface.

Reception Impossible Flag The RS-232C Reception Impossible Flag (AR 0413) is turned ON when new-
ly received data cannot be input. There are two possible reasons that the
new data cannot be input:

1, 2, 3... 1. The previously received data has not yet been input by PIN(64).

2. An error occurred during the previous reception.

This flag will be turned OFF when PIN(64) is executed.

Reception Completed Flag The RS-232C Reception Completed Flag (AR 0414) is turned ON when an
end code or 200 bytes of data have been received (not including the starting
and end codes if used) at the RS-232C interface. Use this flag in ASCII I/O
mode to confirm that data has been received before execution PIN(64) and is
turned OFF when PIN(64) is executed.

Transmission Possible Flag The RS-232C Transmission Possible Flag (AR 0415) is turned ON when data
can be transmitted from the RS-232C interface (i.e., when data is not being
transmitted). This bit is turned OFF whenever the transmission buffer is being
used by LMSG(47), POUT(63), or PIN(64). Be sure to use check this Flag
when executing these instructions.

When a transmission is received on the RS-232C interface, the number of
characters is counted in hexadecimal and then output to AR 0500 to AR
0507 (RS-232C Reception Counter) to assist the user in debugging RS-232C
interface communications. This counter is used for all RS-232C interface op-
erating modes, as well as for error characters. The counter can be reset by
turning SR 25209 ON and then OFF.

AR 0508 to AR 0515 (RS-232C Transmission Counter) operates the same as
AR 0500 to AR 0507, except that it operates for transmisions sent from the
PC through the RS-232C interface.

These counters are refreshed every cycle.

When a transmission is received in ASCII I/O Mode at the RS-232C inter-
face, the number of bytes of data is counted in BCD and then output to AR
06. The start and end codes are not counted.

Counting stops when the RS-232C Reception Completed Flag (AR 0414) is
turned ON. The value stored in AR 06 will not be updated after this flag is
turned on even if new data is received at the RS-232C interface. The content
of AR 06 is reset to 0 when PIN(64) is executed.

AR 06 is refreshed every cycle while the RS-232C interface is being used in
ASCII I/O mode.

While AR 06 contains the number of bytes received in ASCII I/O Mode at the
RS-232C interface, AR 08 contains the number of bytes of data (BCD) ac-
tually input to the PC by PIN(64).

RS-232C Communications
Error Code

RS-232C Reception Counter

RS-232C Transmission
Counter

RS-232C Bytes Received
Area

RS-232C Bytes Input Area

�� ��% �� ���� �������� Section 8-2

�'"

Normally, the bytes input will equal the bytes received, but in some cases the
numbers will differ. The two most likely cases are described below.

1, 2, 3... 1. One operand of PIN(64) specifies the number of bytes to input. If the val-
ue of this operand is less than the content of AR 06, then the bytes input
will not equal the bytes received.

2. PIN(64) might be executed before the RS-232C Reception Completed
Flag (AR 0414) is turned ON. In this case, the number of bytes received
would continue increasing as more data was received.

The content of AR 08 is updated each time that PIN(64) is executed.

8-3 SR Area Bits and Flags
The SR area contains several bits and flags which are used in conjunction
with the RS-232C interface and Host Link Systems.

SR bit Functions

25208 1. RS-232C Interface Error Flag
2. CPU-mounting Host Link Unit Communications Error Flag

25209 1. RS-232C Restart Bit
2. CPU-mounting Host Link Unit Restart Bit

The Error Flag is turned ON when an error (e.g., parity, framing, overrun, or
FCS error) has occurred either in communications via the RS-232 Interface
or between the CPU and the CPU-mounting Host Link Unit. When the Re-
start Bit is turned ON and then OFF, both the RS-232C Interface and the
CPU-mounting Host Link Unit will be restarted and SR 25208, AR 0400 to AR
0407, and AR 05 will be cleared.

8-4 Host Link Communications Protocol
The host computer has initial transmission priority. Data transfer between the
host computer and the Host Link System is, therefore, initiated when the
computer sends a command to a PC in the Host Link System.

A set of data in a transmission is called a block. The data block sent from the
host computer to the PC is called a command block. The block sent from the
PC to the computer is called a response block. Each block starts with a unit
number and a header, and ends with a Frame Check Sequence (FCS) code
and a terminator (B and CR). The terminator in the command block enables
the PC to send a response. The terminator in the response block enables the
host computer to send another command.

8-4-1 Block Format

X101 X100

Unit no. 00 to 31 Header Text FCS Terminator

FCS calculation range

@ X X X X X X CR*

A block is usually made up of one unit called a frame, but long blocks of data
(over 131 characters) must be divided into more than one frame before trans-
mission. The first frame can have up to 131 characters, and subsequent
frames can have up to 128 characters. The data must thus be divided into
more than one frame when there is a block consisting of more than 131 char-
acters. When multiple frames are used, the beginning and intermediate
frames end with a delimiter (CR), instead of a terminator (BCR).

�	���������	�� ��	�	�	
 Section 8-4

�(4

8-4-2 Block Format With More Than One Frame
First Frame (131 Characters or Less)

X101 X100

Unit no. 00 to 31 Header Text no. 1 (123 characters max.) FCS

FCS calculation range

@ X X X X X X CR

Delimiter

Intermediate Frame(s) (128 Characters or Less)

Text no. 2 to M-1 (125 characters max.) FCS

FCS calculation range

X X CR

Delimiter

Last Frame (128 Characters or Less)

Text no. M (124 characters max.) Terminator

X X CR*

FCS

FCS calculation range

Sending Commands To send a command block with more than one frame from the computer, ini-
tially send only the first frame in the block. Do not send the next frame until
the host computer has received the delimiter which should have been sent
back from the PC. Do not separate data from a single word into different
frames for any write command.

U
ni

tN
o.

H
ea

de
r

Te
xt

F
C

S
D

el
im

ite
r

Te
xt

F
C

S
D

el
im

ite
r

Te
xt

F
C

S

U
ni

tN
o.

H
ea

de
r

Te
xt

F
C

S

D
el

im
ite

r

D
el

im
ite

r

H
os

tc
om

pu
te

r
H

os
tL

in
k

U
ni

t

Next frame transmis-
sion
enabled

Next frame transmis-
sion
enabled

Response
block

Te
rm

in
at

or

Te
rm

in
at

or

First frame Intermediate frame End frame

Command block

�	���������	�� ��	�	�	
 Section 8-4

�(�

Receiving Commands To receive a response block consisting of more than one frame from the PC,
the host computer must send the carriage return code (delimiter) to the PC
after receiving the delimiter from the PC. This enables the PC to send the
next frame.

U
ni

tN
o.

H
ea

de
r

Te
xt

F
C

S

Te
xt

F
C

S
D

el
im

ite
r

D
el

im
ite

r

H
os

tc
om

pu
te

r
H

os
tL

in
k

U
ni

t

Next frame transmission
enabled

Next frame transmission
enabled

Intermediate
frame End frame

Command block

Te
rm

in
at

or

U
ni

tN
o.

H
ea

de
r

Te
xt

F
C

S
D

el
im

ite
r

First frame

Te
xt

F
C

S
Te

rm
in

at
or

D
el

im
ite

r

Response
block

8-4-3 Data Representation
Numerical data within a transmission is expressed in hexadecimal, decimal,
or binary format. Refer to the format example of each command in 8-5 Host
Link Commands and Responses for details. The appropriate range is indi-
cated in the following manner.

Hexadecimal Data

X163 X162 X161 X160

In the above diagram, the elements X163 to X160 indicate that the data is
expressed in hexadecimal. Each digit can, therefore, be in the range from 0
(ASCII 48dec, binary 0000) to 9 (ASCII 49dec, binary 1001), or A (ASCII
65dec, binary 1010) to F (ASCII 70dec, binary 1111).

Decimal Data

X103 X102 X101 X100

In this figure, X103 to X100 indicate that the data is expressed in decimal.
Each digit can, therefore, be in the range from 0 (binary 0000) to 9 (binary
1001).

�	���������	�� ��	�	�	
 Section 8-4

�(�

Binary Data

X23 X22 X21 X20

ON/
OFF

ON/
OFF

ON/
OFF

ON/
OFF

In the above figure, the ON/OFF and X23 to X20 indicate that the data is
binary. Each box therefore represents either 0 or 1 as follows:

0 (ASCII 48dec): OFF
1 (ASCII 49dec): ON.

Data Areas Data area codes must be entered in capital letters and must be 4 characters
wide. Names shorter than 4 characters must be followed by spaces (ASCII
32dec) to make up the 4 characters. Data areas valid for each command are
listed with the command.

8-4-4 FCS Calculation
The FCS is 8-bit data converted into two ASCII characters. The 8-bit data is
the result of an EXCLUSIVE OR sequentially performed between each char-
acter, from the first character in the frame to the last character of the text in
that frame.

@ 1 0 R H 0 0 3 1 0 0 0 1 5 8 * CR

Unit no. TextHeader FCS Terminator

@ 0100 0000
XOR

1 0011 0001
XOR

0 0011 0010
XOR

R 0101 0010

0 0011 0000
XOR

1 0011 0001

0101 1000

0011 0101 0011 1000

FCS

Conversion
to ASCII

:

5 8

�	���������	�� ��	�	�	
 Section 8-4

�(�

8-4-5 FCS Calculation Program Example
The following program is an example of how FCS calculation can be per-
formed on received data.

Transmit/receive data

Number of characters in FCS calculation range.
Receive data contains an FCS, delimiter,
terminator, etc. The ABORT command,
however, does not contain an FCS.

FCS calculation result

Receive FCS data

A space follows the semicolon if the
FCS reception is performed normally. If
it is not performed, ERR is displayed.

Note: in this example, CR (CHR$(13)) is not included in RESPONSE$.

8-5 Host Link Commands and Responses
In the Host Link Mode, the host computer can both monitor and control the
PC. The host computer monitors the PC by sending commands to the PC
requesting various types of data: program data, I/O data, and error data. The
host computer controls the PC by writing various types of data: data that
changes the PC operating mode, program data, I/O data, and memory area
data. In either case it is the host computer that initiates all communications.

Because the PC is passive is all communications, it cannot monitor host
computer errors, it can only check communication errors existing in the data
it receives. These are checked for through parity check and frame check se-
quence.

The response time will vary in accordance with the transfer speed, the
amount of data, and the PC cycle time. The RS-232C interface servicing time
can be set in the System DM. The longer the servicing time, the faster the
response time. Long service times will increase the cycle time, possibly caus-
ing inaccuracies in timers (see Section 6). If the servicing time is extremely
short, then the response time will be extremely slow. The following data
shows the actual times required to read 10 words of DM data from a PC with
a cycle time of 30 ms for various settings of the servicing time.

0% servicing time: 7.0 s
1% servicing time: 0.90s
2% servicing time: 0.28 s
10% servicing time: 0.19 s
50% servicing time: 0.14 s
99% servicing time: 0.14 s

The rest of this section describes the commands sent from the host computer
to the PC. Tables summarizing the complete set of instructions according to
their command level are included at the end of this section (see Section 8-6).

�	����%� ��% ����	���� Section 8-5

�(#

8-5-1 TEST
Transmits one block of data to the PC and then returns it, unaltered, to the
host computer. Each frame is treated as a block regardless of whether it
used a terminator or delimiter.

Command Format

@ T S
X101 X100

Unit no. FCS CR*Any characters (118 max.) other than a carriage return

Response Format

@ T S
X101 X100

Unit no. FCS CR*Any characters (118 max.) other than a carriage return

8-5-2 STATUS READ
This command causes the PC to read the operating status of the PC. A mes-
sage is entered only when MSG(46) has been executed.

Command Format

@ M S
X101 X100

Unit no. FCS CR*

Response Format

@ M S
X101 X100

Unit no.
Response

code
FCS CR*

14 13 12 11 10 9 815

Unit no.

8 kbytes: 0 1 0

6 5 4 3 2 1 07

0 0 0

Fixed to 16 characters

Program area
size

Program
area

RAM: 1
ROM: 0

0 0: PROGRAM mode
1 0: RUN mode
1 1: MONITOR mode

1: Generation of
FALS instruction

1: Error diagnosis in progress

0 1 15
Status data Message

0

1

X161 X160

�	����%� ��% ����	���� Section 8-5

�('

8-5-3 ERROR READ
Reads and clears errors in the PC. Also checks whether previous errors have
already been cleared.

Command Format

@ M F
X101 X100

Unit no. FCS CR*Error clear
X101 X100

00: Don’t
clear
01: Clear

Response Format

X101 X100

@ M F

1: FALS (CPU stops)

1: END(01) instruction missing (F0)

1: Host Link transmission error

1: PC Link transmission error

1: I/O bus error (C0 to 3)

1: Memory error (F1)

X161 X160

Response
code Error (first word)

14 13 12 11 10 9 815

1: FAL error

1: Special I/O Unit error (D0)

1: Battery failure (F7)

0 0 0: CPU Rack
0 0 1: Expansion I/O Rack 1
0 1 0: Expansion I/O Rack 2
0 1 1: Expansion I/O Rack 3

(Data from I/O bus)
0 0: Group 1 (control signal error)
0 1: Group 2 (data bus failure)
1 0: Group 3 (address bus failure)

14 13 12 11 10 9 815

6 5 4 3 2 1 07 6 5 4 3 2 1 07

0$0

FAL, FALS No

X163 X162 X161 X160

Error (second word)

X163 X162 X161 X160

Unit no.

1: Cycle time over (F8)

1: I/O Unit over (E1)

9 $9

~~ ~~

0$0

9 $9

FCS CR*

8-5-4 IR AREA READ
Reads the contents of the specified number of IR words, starting from the
specified word.

Command Format

@ R R

X101 X100

Unit no. FCS CR*Beginning word

X103 X102 X101 X100 X103 X102 X101 X100

No. of words

�	����%� ��% ����	���� Section 8-5

�((

Response Format

@ R R

X101 X100

Unit no.

FCS CR*

X161 X160 X163 X162 X161 X160 X163 X162 X161 X160

Response
code

Data from beginning
word

Data from second
word

8-5-5 HR AREA READ
Reads the contents of the specified number of HR words, starting from the
specified word.

Command Format

@ R H

X101 X100

Unit no. FCS CR*Beginning word

X103 X102 X101 X100 X103 X102 X101 X100

No. of words

Response Format

@ R H

X101 X100

Unit no.

FCS CR*

Data from beginning
word

X163 X162 X161 X160

Data from second
word

X163 X162 X161 X160

Response
code

X161 X160

8-5-6 AR AREA READ
Reads the contents of the specified number of AR words, starting from the
specified word.

Command Format

@ R J

X101 X100

Unit no. FCS CR*Beginning word

X103 X102 X101 X100 X103 X102 X101 X100

No. of words

Response Format

@ R J

X101 X100

Unit no.

FCS CR*

Data from beginning
word

X163 X162 X161 X160

Data from second
word

X163 X162 X161 X160

Response
code

X161 X160

�	����%� ��% ����	���� Section 8-5

�(�

8-5-7 LR AREA READ
Reads the contents of the specified number of LR words, starting from the
specified word.

Command Format

@ R L

X101 X100

Unit no. FCS CR*Beginning word

X103 X102 X101 X100 X103 X102 X101 X100

No. of words

Response Format

@ R L

X101 X100

Unit no.

FCS CR*

Data from beginning
word

X163 X162 X161 X160

Data from second
word

X163 X162 X161 X160

Response
code

X161 X160

8-5-8 TC STATUS READ
Reads the status of the Completion Flags of the specified number of timers/
counters, starting from the specified timer/counter.

Command Format

@ R G

X101 X100

Unit no. FCS CR*
Beginning

timer/counter
X103 X102 X101 X100 X103 X102 X101 X100

No. of timers/counters

Response Format

@ R G

X101 X100

Unit no. ON/
OFF

ON/
OFF

FCS CR*

Data from second timer/counter

Data from beginning timer/counter

X161 X160

Response
code

8-5-9 DM AREA READ
Reads the contents of the specified number of DM words, starting from the
specified word.

Command Format

@ R D

X101 X100

Unit no. Beginning word

X103 X102 X101 X100 X103 X102 X101 X100

No. of words
FCS CR*

�	����%� ��% ����	���� Section 8-5

�(,

Response Format

@ R D

X101 X100

Unit no.

FCS CR*

Response
code

X161 X160

Data from beginning
word

Data from second
word

X163 X162 X161 X160 X163 X162 X161 X160

8-5-10 PV READ
Reads the specified number of timer/counter PVs (present values), starting
from the specified timer/counter.

Command Format

@ R C

X101 X100

Unit no. FCS CR*X103 X102 X101 X100 X103 X102 X101 X100

Beginning TIM/CNT Number

Response Format

@ R C

X101 X100

Unit no.

FCS CR*

Data from beginning
timer/counter

X103 X102 X101 X100

Data from second
timer/counter

X103 X102 X101 X100

Response
code

X161 X160

8-5-11 SV READ 1
Reads the set value (a constant) of the specified timer/counter instruction.
Reads from the beginning of the program and may therefore require about 20
seconds or more to produce a response. Refer also to SV READ 2.

Command Format

@ R #

X101 X100
FCS CR*

T I M --
T I M H
C N T --
C N T R

Number

x101 x100x103 x102

0 0 0 0
: :
: :

0 5 1 1

Unit no.

Note: Dashes represent spaces.

TIM/CNT

x101 x100x103 x102

Response Format

@ R #

X101 X100 X101 X100X103 X102
FCS CR*X161 X160

Unit no.
Response

code Set value

�	����%� ��% ����	���� Section 8-5

�("

If the command is used more than once, the set value of only the first instruc-
tion will be read. If the second word (the operand) is not a constant, an error
response (16) will be returned.

8-5-12 SV READ 2
Reads the set value (a constant, or data area and word) of the specified tim-
er/counter instruction. The timer/counter instruction is designated by program
address.

Command Format

@ R $

X101 X100X101 X100

Address

X103 X102

FCS CR*

TIM/CNT Number

T I M --
T I M H
C N T --
C N T R

X101 X100X103 X102

0 0 0 0
: :
: :

0 5 1 1

Unit no.

Note: Dashes represent spaces.

X101 X100X103 X102

Response Format

@ R $

X101 X100 X101X103 X102 X101

Data area FCS CR*X161 X160

WordUnit no. Response
code

C I O --...IR area
L R -- --...LR area
H R -- --...HR area
A R -- --...AR area
D M -- --...DM area
D M � --...�DM area
C O N --...Constant

Note: Dashes represent spaces.

OP3 OP4OP1 OP2

8-5-13 STATUS WRITE
Changes the operating mode of the PC according to the information input
into digit X160.

Command Format

@ S C Mode data
X161 X160

FCS CR*

7 6 5 4 3 2 1 0

X161 X162

0 0 0 0 0 0

0 0: PROGRAM mode
1 0: MONITOR mode
1 1: RUN mode

X101 X100
Unit no.

�	����%� ��% ����	���� Section 8-5

��4

Response Format

@ S C FCS CR*X161 X160

Response
codeUnit no.

X101 X100

8-5-14 IR AREA WRITE
Writes data to the IR area, starting from the specified word. Writing is done
word by word.

Command Format

@ W R

X101 X100

Unit no.

X103 X102 X101 X100 X161 X160

FCS CR*

Beginning word

X163 X162 X161 X160X163 X162

Data for beginning
word

Data for second
word

Response Format

@ W R

X101 X100
FCS CR*X161 X160

Unit no.
Response

code

8-5-15 HR AREA WRITE
Writes data to the HR area, starting from the specified word. Writing is done
word by word.

Command Format

@ W H

X101 X100 X103 X102 X101 X100

FCS CR*

Beginning word Data for beginning
word

Data for second
wordUnit no.

X163 X162 X161 X160 X163 X162 X161 X160

Response Format

@ W H FCS CR*X161 X160

Response
codeUnit no.

X101 X100

�	����%� ��% ����	���� Section 8-5

���

8-5-16 AR AREA WRITE
Writes data to the AR area, starting from the specified word. Writing is done
word by word.

Command Format

@ W J

X101 X100 X103 X102 X101 X100

FCS CR*

Beginning word Data for beginning
word

Data for second
wordUnit no.

X163 X162 X161 X160 X163 X162 X161 X160

Response Format

@ W J FCS CR*X161 X160

Response
codeUnit no.

X101 X100

8-5-17 LR AREA WRITE
Writes data to the LR area, starting from the specified word. Writing is done
word by word.

Command Format

@ W L

X101 X100 X103 X102 X101 X100

FCS CR*

Beginning word Data for beginning
word

Data for second
wordUnit no.

X163 X162 X161 X160 X163 X162 X161 X160

Response Format

@ W L FCS CR*X161 X160

Response
codeUnit no.

X101 X100

8-5-18 TC STATUS WRITE
Writes the status of Completion Flags to the TC area, starting form the speci-
fied timer/counter.

Command Format

@ W G

X101 X100 X103 X102 X101 X100
FCS CR*

Status of second timer/counter
Status of beginning timer/counter
Beginning timer/counter

0: OFF
1: ON

ON/
OFF

ON/
OFF

Timer/CounterUnit no.

�	����%� ��% ����	���� Section 8-5

���

Response Format

X101 X100
FCS CR*X161 X160

@ W GUnit no.
Response

code

8-5-19 DM AREA WRITE
Writes data to the DM area, starting from the specified word. Writing is done
word by word. If the Program Memory is in an EPROM chip, or if the write
enable switch is set to OFF, the the writing range only extends up to DM
0999.

Command Format

@ W D

X101 X100

Unit no.

X103 X102 X101 X100 X161 X160

FCS CR*

Beginning word

X163 X162 X161 X160X163 X162

Data for beginning
word

Data for second
word

Response Format

@ W D FCS CR*X161 X160

Response
codeUnit no.

X101 X100

8-5-20 PV WRITE
Writes the PVs (present values) of timers/counters starting from the specified
timer/counter.

Command Format

X101 X100 X103 X102 X101 X100

FCS CR*

Beginning word Data for beginning
word

Data for second
word@ W CUnit no.

X103 X102 X101 X100 X103 X102 X101 X100

Response Format

@ W C

X101 X100

Response
code FCS CR*X161 X160

Unit no.

�	����%� ��% ����	���� Section 8-5

���

8-5-21 SV CHANGE 1
Changes the set value (constant only) of the specified timer/counter instruc-
tion. Reads from the beginning of the program and may therefore require up
to about 20 seconds to produce a response. Refer also to SV CHANGE 2.

Command Format

@ W # CRNew set value FCS *TIM/CNT Number

T I M --
T I M H
C N T --
C N T R

Unit no.

X103 X102 X101 X100

0 0 0 0
: :
: :

0 5 1 1

0 0 0 0
: :
: :

9 9 9 9

X101 X100

Note: Dashes represent spaces.

X103 X102 X101 X100

Response Format

@ W #

X101 X100
FCS CR*X161 X160

Response
codeUnit no.

8-5-22 SV CHANGE 2
Changes the set value (a constant, or data area and word) of the specified
timer/counter instruction. The instruction is specified by program address.

Command Format

@ W $

X101 X100 X103 X102 X101 X100

FCS CR*

Address

X101 X100

Number

X103 X102

T I M --
T I M H
C N T --
C N T R

TIM/CNT

Data area Address**

X103 X102 X101 X100

0 0 0 0
: :
: :

0 5 1 1

Unit no.

C I O --....IR area
L R -- --....LR area
H R -- --....HR area
A R -- --....AR area
D M -- --....DM area
D M � --....�DM area
C O N --....Constant
Note: Dashes represent spaces.

**New set value

Response Format

@ W $

X101 X100
FCS CR*X161 X160

Response
codeUnit no.

�	����%� ��% ����	���� Section 8-5

��#

8-5-23 FORCED SET
Forced sets a bit in an IR, LR, HR, AR, or TC area. Bits need to be force set
one at a time.

Command Format

@ K S

X101 X100 X103 X102

Data area

X101 X100

BitWord

X101 X100
FCS CR*

TC area

Unit no.

C I O -- IR area. . . .
L R -- -- LR area. . . .
H R -- -- HR area. . . .
A R -- -- AR area. . . .
T I M --
T I M H
C N T --
C N T R

Note: Dashes represent spaces.

Response Format

@ K S FCS CR*X161 X160

Response
codeUnit no.

X101 X100

8-5-24 FORCED RESET
Force resets a bit in an IR, LR, HR, AR, or TC area. Bits can only be force
set one at a time. If an attempt is made to simultaneously force reset more
than one bit, none of the bits will reset.

Command Format

@ K R

X101 X100 X103 X102

Data area

X101 X100

BitWord

X101 X100
FCS CR*

TC area

Unit no.

C I O -- IR area. . . .
L R -- -- LR area. . . .
H R -- -- HR area. . . .
A R -- -- AR area. . . .
T I M --
T I M H
C N T --
C N T R

Note: Dashes represent spaces.

Response Format

@ K R FCS CR*X161 X160

Response
codeUnit no.

X101 X100

�	����%� ��% ����	���� Section 8-5

��'

8-5-25 MULTIPLE FORCED SET/RESET
This command force sets or resets bits in the IR, LR, HR, AR, or TC areas.
All forced status will be lost if the PC is switched to RUN mode.

Command Format

@ F K

X101 X100 X103 X102

C I O -- IR area. . . .
L R -- -- LR area. . . .
H R -- -- HR area. . . .
A R -- -- AR area. . . .
T I M --
T I M H
C N T --
C N T R

X101 X100

Word

TC area

X160 X160 X160 X160

X160 X160

FCS CR*
... 2 1 0

3 2 1 0

0 0 0 0....Ignored
0 0 1 0....Data “0”
0 0 1 1....Data “1”
0 1 0 0....Forced reset
0 1 0 1....Forced set
1 0 0 0....Forced set/reset clear

Data area

Bit 15 14 13 12

Forced set/reset/data clear

X160

Note: Dashes represent spaces.

Unit no.

Response Format

X101 X100

@ F K

X161 X160

Response
codeUnit no. FCS CR*

8-5-26 MULTIPLE FORCED SET/RESET STATUS READ
Reads the forced set or forced reset status of the PC.

Command Format

@ F R FCS CR*Unit no.

X101 X100

�	����%� ��% ����	���� Section 8-5

��(

Response Format

@ F R

C I O -- IR area. . . .
L R -- -- LR area. . . .
H R -- -- HR area. . . .
A R -- -- AR area. . . .
T I M --
T I M H
C N T --
C N T R

TC area

Bit 15 14 13 12

X101 X100 X103 X102

Data area

X101 X100

Word

0P1 0P2 0P3 0P4

Forced set/reset status

0/1 0/1 0/1 0/1

Forced set/reset status
1: Forced set/reset
0: Not forced set/reset

,0/1 0/1

Bit 1 0
Delineator Only when applicable

FCS CR*Data area

0P1 0P2 0P3 0P4

Word

X103 X102 X101 X100

Forced set/reset status

X161 X160

0/1 0/1 ... 0/1

Note: Dashes represent spaces.

Unit no.

8-5-27 FORCED SET/RESET CANCEL
Cancels all forced set and forced reset bits (including those achieved via
MULTIPLE FORCED SET/RESET.

Command Format

@ K C

X101 X100
FCS CR*Unit no.

Response Format

FCS CR*X161 X160

Response
code

X101 X100

@ K CUnit no.

8-5-28 PC MODEL READ
Reads the model type of the PC.

Command Format

X101 X100
@ M M FCS CR*Unit no.

�	����%� ��% ����	���� Section 8-5

���

Response Format

@ M M

0 1 C250 or P-type
0 2 C500
0 3 C120 or C50
0 9 C250F
0 A C500F
0 B C120F
0 E C2000
1 0 C1000H
1 1 C2000H or K-type
1 2 C200H or C20H/C28H/C40H/C60H
1 3 C1000HF

X101 X100 X161 X160

Response
code FCS CR*X161 X160

PC model
codeUnit no.

8-5-29 ABORT and INITIALIZE
The ABORT command is used to abort the process being performed by the
Host Link function and to then enable reception of the next command. The
INITIALIZE command initializes the transmission control procedure of all the
PCs connected to the host computer. Neither command receives a response.

A processing time of 100 ms is required between reception of the ABORT or
INITIALIZE commands, and reception of the next command. If INITIALIZE is
used in a single-link system, it will be regarded as undefined.

ABORT Command Format

X101 X100
@ X Z FCS CR*Unit no.

INITIALIZE Command Format

@ CR* *

8-5-30 Response to an Undefined Command
This response is sent if the PC cannot read the command’s header code, or if
the specified command is not valid for the command level or model of PC. If
this response is received check the header code, command level, and PC
model, then execute the correct command.

Response Format

X101 X100
@ I C FCS CR*Unit no.

�	����%� ��% ����	���� Section 8-5

��,

8-5-31 Response Indicating an Unprocessed Command
This response is sent when the PC cannot process a command. The type of
error encountered by the PC can be identified via the response code. (See
Section 8-5-36.)

Response Format

@

X101 X100 X161 X160
FCS CR*Header code

Response
codeUnit no.

The header code varies according to the command which was sent. The
headers of some commands include subheader codes (e.g., I/O REGISTER,
I/O READ, and DM SIZE CHANGE).

8-5-32 PROGRAM READ
Transmits the contents of the PC program memory.

Command Format

X101 X100
@ R P FCS CR*Unit no.

Response Format

@ R P

X101 X100
FCS CR*Program

X161 X160 X161 X160

Memory size

X161 X160

Response
codeUnit no.

8-5-33 PROGRAM WRITE
Writes the received program into the PC program memory.

Command Format

@ W P

Up to maximum memory capacity

X101 X100

Unit no.

X161 X160 X161 X160

Program FCS CR*

Response Format

@ W P

X101 X100
FCS CR*X161 X160

Response
codeUnit no.

�	����%� ��% ����	���� Section 8-5

��"

8-5-34 I/O REGISTER
Registers the IR, LR, HR, AR, or TC area bit, or the DM word that is to be
read via I/O READ (described in the next subsection). Registered data is re-
tained until new data is registered, or the power is turned OFF.

Command Format

@ Q Q M R

TC area

X101 X100 X103 X102

Data area

X101 X100

Word

Data area

OP1 OP2 OP3 OP4

Word

X103 X102 X101 X100

Delinea-
tor

,
Bit no. or

Word

Subheader
code

Bit no. or
Word FCS CR*OR1 OR2

Unit no.

C I O --....IR area
L R -- --....LR area
H R -- --...HR area
A R -- --....AR area
T I M --
T I M H
C N T --
C N T R
D M -- --....DM area

Delineator

OP1 OP2 OP3 OP4 OR1 OR2

0 0
0 1
: :
: :
1 5

C H

Bit no.

Word
setting

Note: Dashes represent spaces.

,

Setting Table

Data Area Word Address Bit or Word Setting Response

Bit IR 0000 to 0255 00 to 15 ON/OFF

LR 0000 to 0063 00 to 15 ON/OFF

HR 0000 to 0099 00 to 15 ON/OFF

AR 0000 to 0027 00 to 15 ON/OFF

TIM/CNT 0000 to 0511 Anything other than CH ON/OFF

Wd IR 0000 to 0255 CH Word data

LR 0000 to 0063 CH Word data

HR 0000 to 0099 CH Word data

AR 0000 to 0027 CH Word data

TIM/CNT 0000 to 0511 CH ON/OFF and PV

DM 0000 to 1999 Any character Word data

The maximum number of data items is 128. Count the TC area word specifi-
cation as two items.

The data is registered in the same sequence in which it was specified.

Response Format

X101 X100
@ Q Q M R FCS CR*X161 X160

Response
codeUnit no.

Subheader
code

�	����%� ��% ����	���� Section 8-5

�,4

8-5-35 I/O READ
Reads the data specified by I/O REGISTER.

Command Format

Subheader code

X101 X100
@ Q Q I R FCS CR*Unit no.

Response Format

@ Q Q I R

,
Read word data

X163 X162 X161 X160
FCS CR*

ON/
OFF

Present value

X103 X102 X101 X100X101 X100

Subheader code

,

ON/
OFF , ,

Read bit status
0: OFF
1: ON

Delineator

X161 X160

Response
codeUnit no.

For TIM/CNT status read

8-5-36 Response Code List
X161 X160 Description

0 0 Normal Completion

0 1 Not executable in RUN mode

0 2 Not executable in MONITOR mode

0 3 Not executable with PROM mounted

0 4 Address over (data overflow)

0 B Not executable in PROGRAM mode

1 0 Parity error

1 1 Framing error

1 2 Overrun

1 3 FCS error

1 4 Format error (parameter length error)

1 5 Entry number data error (parameter error, data code error, data length error)

1 6 Instruction not found

1 8 Frame length error

1 9 Not executable (due to unclearable error, memory error, unwriteable EEPROM, missing I/O table, etc.)

2 2 No Memory Unit mounted

2 3 User memory is write-protected

A 0 Aborted due to parity error in transmit data

A 1 Aborted due to framing error in transmit data

A 2 Aborted due to overrun in transmit data

A 4 Aborted due to format error in transmit data

A 5 Aborted due to entry number data error in transmit data

A 8 Aborted due to frame length error in transmit data

Other Probably produced by noise. Execute command again.

�	����%� ��% ����	���� Section 8-5

�,�

8-5-37 Communications Examples

The following are examples of commands from the host computer (first line)
and the responses that would be given by the PC (second line). The arrows
indicate the transfer of the right to transmit.

Reading Data from Multiple PC Words (IR 04 to IR 06) (Normal Completion)

@ 1 0 R R 0 0 0 4 0 0 0 3 4 6

FCS

@ 1 0 R R 0 0 F E D C B A 9 8 7 6 5 4 4 7

Data in Wd
04

FCS

Data in Wd
05

Data in Wd
06

* CR

* CR

Wd 9000 Specified by Mistake in a DM AREA WRITE Command

@ 1 0 W D 9 0 0 0 A B C D 5 F

@ 1 0 W D 1 5 5 6

FCS

FCS

* CR

* CR

Header Code Destroyed During ERROR READ Operation

* CR@ 1 0
(M)(F)

* CR@ 1 0 I C 4 B

FCS

�	����%� ��% ����	���� Section 8-5

�,�

Writing Data into PC Words (“0123” to DM 0400 and “FEDC” to DM 0401) and Confirming with DM
AREA READ.

FCS

@ 1 0 R D 0 4 0 0 0 0 0 2 5 1

@ 1 0 W D 0 0 5 2

@ 1 0 W D 0 4 0 0 0 1 2 3 F E D C 5 2

@ 1 0 R D 0 0 0 1 2 3 F E D C 5 3

FCS

FCS

FCS

* CR

* CR

* CR

* CR

�	����%� ��% ����	���� Section 8-5

�,�

8-6 Command Levels
There are three levels of Host Link Unit commands. These different operating
levels allow the user to establish hierarchical protocols to give more sophisti-
cated control.

Level 1

Header Code Name PC Mode

RUN MONITOR PROGRAM

TS TEST Valid Valid Valid

MS STATUS READ Valid Valid Valid

MF ERROR READ Valid Valid Valid

RR IR AREA READ Valid Valid Valid

RH HR AREA READ Valid Valid Valid

RJ AR AREA READ Valid Valid Valid

RL LR AREA READ Valid Valid Valid

RG TC STATUS READ Valid Valid Valid

RD DM AREA READ Valid Valid Valid

RC PV READ Valid Valid Valid

R# SV READ 1 Valid Valid Valid

R$ SV READ 2 Valid Valid Valid

SC STATUS WRITE Valid Valid Valid

WR IR AREA WRITE Not Valid Valid Valid

WH HR AREA WRITE Not Valid Valid Valid

WJ AR AREA WRITE Not Valid Valid Valid

WL LR AREA WRITE Not Valid Valid Valid

WG TC STATUS WRITE Not Valid Valid Valid

WD DM AREA WRITE Not Valid Valid Valid

WC PV WRITE Not Valid Valid Valid

W# SV CHANGE 1 Not Valid Valid Valid

W$ SV CHANGE 2 Not Valid Valid Valid

KS FORCED SET Not Valid Valid Not Valid

KR FORCED RESET Not Valid Valid Not Valid

FK MULTIPLE FORCED SET/RESET Not Valid Valid Not Valid

FR MULTIPLE FORCED SET/RESET STATUS READ Not Valid Valid Not Valid

KC FORCED SET/RESET CANCEL Not Valid Valid Not Valid

MM PC MODEL READ Valid Valid Valid

IC Undefined command (response only) Valid Valid Valid

Unprocessed command (response only) Valid Valid Valid

XZ ABORT (command only) Valid Valid Valid

Level 2

Header Code Name PC Mode

RUN MONITOR PROGRAM

RP PROGRAM READ Valid Valid Valid

WP PROGRAM WRITE Not valid Not valid Valid

Level 3

Header Code Name PC Mode

RUN MONITOR PROGRAM

QQ I/O REGISTER Valid Valid Valid

QQ I/O READ Valid Valid Valid

�	����% $���
� Section 8-6

�,'

��
�
�� "

����+0��1�����%

��� �	+12�	*12��+12�$+1 "������ �������#
��� �� ���� ���� � ���� ��� �#�� �"�� �� #(����#� ��� �� ����� ����

����� ���� ���� ������O� ���� ��� #�� ��#(�� ?���35 ���� � ����� ������ ���

���� ��� ��� "������� ������# ��� �� �#���#�� #�� ��� �#�� ������ �# ����� �����
 �� �"��# ���
 8�� ������# ��� ��

���"�#���
 ������5 ���)�� *��������' ��� �������' &���� �����'��
 8�� ������# ��� �� ����� ��#
� ����� �#� (� ���� ��

 ���(������ ��
5 ����� � +�!
, -��� #�� +�� -, -���
 8�� ������# ��� �� ������ ����� �#� ����� ���� ��"� ��
 ��

"��
�#�5 ����� � !�"�+ �.��%��' �.� ���'��(

0�� '�#��)����# ��� 	*$

0�	 ���
�#���� '�#��� #�� 7���� ����#
�� 	*$

0�� ��#���
 #�� ���#���
 7����� #�� ����#
�� 	*$

0�� 7���� ����#
�� 	*&

0�! 7���� 1�� ��� 8��� ��� 	*0

0�$ 1�� ���3 7���� ���������
 	*0

0�$�� 7���� ��� ��� 	0+

0�$�)��#��� ���������
 	0+

0�$�� �������)� ����" ��� 	0+

0�$�� ���� ���� ����
 	0+

0�$�! �� ���� 	0+

�,(

9-1 Alarm Indicators
There are two indicators on the front of the CPU that provide visual indication
of an abnormality in the PC. The error indicator (ERR) indicates fatal errors
(i.e., ones that will stop PC operation); the alarm indicator (ALARM) indicates
nonfatal ones. These indicators are shown in 2-1 Indicators.

Caution The PC will turn ON the error indicator (ERR), stop program execution, and
turn OFF all outputs from the PC for most hardware errors, for certain fatal
software errors, or when FALS(07) is executed in the program (see tables on
pages 287 to 288). PC operation will continue for all other errors. It is the us-
er’s responsibility to take adequate measures to ensure that a hazardous
situation will not result from automatic system shutdown for fatal errors and
to ensure that proper actions are taken for errors for which the system is not
automatically shut down. System flags and other system and/or user-pro-
grammed error indications can be used to program proper actions.

9-2 Programmed Alarms and Error Messages
FAL(06), FALS(07), and MSG(46) can be used in the program to provide
user-programmed information on error conditions. With these three instruc-
tions, the user can tailor error diagnosis to aid in troubleshooting.

FAL(06) is used with a FAL number other than 00, which is output to the SR
area when FAL(06) is executed. Executing FAL(06) will not stop PC operation
or directly affect any outputs from the PC.

FALS(07) is also used with a FAL number, which is output to the same loca-
tion in the SR area when FALS(07) is executed. Executing FALS(07) will stop
PC operation and will cause all outputs from the PC to be turned OFF.

When FAL(06) is executed with a function number of 00, the current FAL
number contained in the SR area is cleared and replaced by another, if more
have been stored in memory by the system.

When MSG(46) is used a message contained specified data area words is
displayed onto the Programming Console or another Programming Device.

The use of these instructions is described in detail in Section 5 Instruction
Set.

9-3 Reading and Clearing Errors and Messages
System error messages can be displayed onto the Programming Console or
any other Programming Device.

On the Programming Console, press the CLR, FUN, and MONTR keys. If
there are multiple error messages stored by the system, the MONTR key can
be pressed again to access the next message. If the system is in PROGRAM
mode, pressing the MONTR key will clear the error message, so be sure to
write down all message errors as you read them. (It is not possible to clear
an error or a message while in RUN or MONITOR mode; the PC must be in
PROGRAM mode.) When all messages have been cleared, “ERR CHK OK”
will be displayed.

Details on accessing error messages from the Programming Console are
provided in 7-2 Monitoring Operation and Modifying Data. Procedures for the
GPC, LSS, and FIT are provided in the relevant operation manuals.

���%��� ��% �
������)��	�� ��% �������� Section 9-3

�,�

9-4 Error Messages
There are basically three types of errors for which messages are displayed:
initialization errors, non-fatal operating errors, and fatal operating errors.
Most of these are also indicated by FAL number being transferred to the FAL
area of the SR area. In addition, there are errors which can occur when in-
putting the program. For information on these, and their message displays,
refer to 4-6-3 Checking the Program.

The type of error can be quickly determined from the indicators on the CPU,
as described below for the three types of errors. If the status of an indicator is
not mentioned in the description, it makes no difference whether it is lit or not.

After eliminating the cause of an error, clear the error message from memory
before resuming operation.

Asterisks in the error messages in the following tables indicate variable nu-
meric data. An actual number would appear on the display.

The following error message appears before program execution has been
started. The POWER indicator will be lit, the RUN indicator will not be lit, and
the RUN output will be OFF for this error.

Error and message FAL no. Probable cause Possible remedy

Waiting for Units

��<6')�P=

None Units have not started. Check all system components to
be sure they are working properly
and replace all faulty Units.

The following error messages appear for errors that occur after program exe-
cution has been started. PC operation and program execution will continue
after one or more of these errors have occurred. For each of these errors, the
POWER and RUN indicators will light and the ALARM/ERROR indicator will
flash. The RUN output will be ON.

Error and message FAL no. Probable cause Possible correction

FAL error

,F, 8')� 8'�

01 to 99 FAL(06) has been
executed in program.
Check the FAL number to
determine conditions that
would cause execution
(set by user).

Correct according to cause
indicated by FAL number (set by
user).

9E Checksum Flag (AR
1315) is ON.

Check Parameter and Parameter
Backup areas. Set and back up
parameters with system
command.

Cycle time overrun

,�'� �)�7 �97�

F8 Watchdog timer has
exceeded 100 ms.

Program cycle time is longer than
recommended. Reduce cycle time
if possible.

Battery error

4'�� ��6

F7 Backup battery is missing
or its voltage has
dropped.

Check battery and replace if
necessary.

No message

Host Link Error None • Error exists between
host computer and
built-in Host Link
Interface.

• Check link set-up and
requirements.

Initialization Error

Non-fatal Operating Errors

)��	� �������� Section 9-4

�,,

The following error messages appear for errors that occur after program exe-
cution has been started. PC operation and program execution will stop and
all outputs from the PC will be turned OFF when any of the following errors
occur. All CPU indicators will not be lit for the power interruption error. For all
other fatal operating errors, the POWER and ALARM/ERROR indicators will
be lit. The RUN output will be OFF. For power interruptions, all indicators will
not be lit.

Error and message FAL no. Probable cause Possible correction

Power interruption

No message

None Power has been
interrupted for at least 10
ms.

Check power supply voltage and
power lines. Try to power-up
again.

CPU error

No message

None Watchdog timer has
exceeded maximum
setting (default setting:
130 ms).

Restart system in PROGRAM
mode and check program. Reduce
cycle time or reset watchdog timer
if longer time required. (Consider
effects of longer cycle time before
resetting.)

Memory error

�7���F 7��

F1 Memory Unit is
incorrectly mounted or
missing, checksum error
has occurred, or incorrect
instruction exists.

Check Memory Unit to make sure
it is mounted and backed up
properly. Perform a Program
Check Operation to locate cause
of error. If error not correctable, try
inputting program again.

No END(01) instruction

�� 7�%)�,�

F0 END(01) is not written
anywhere in program.

Write END(01) at the last address
of the program.

I/O Unit over

)2� <�)� �97�

E1 The I/O capacity of the
PC has been exceeded.

Reduce the number of I/O points
and restart the PC.

I/O bus error

Rack no.
)2� 4<, 7��

C0 to C3 Error has occurred in the
bus line between the
Units.

The rightmost digit of the FAL
number will indicate the number of
the Unit where the error was
detected. Check cable
connections between Units.

FALS error

,F, 8')� 8'�BB

01 to 99 FALS has been executed
by the program. Check
the FAL number to
determine conditions that
would cause execution
(Set by user or by
system).

Correct according to cause
indicated by FAL number. If FAL
number is 9F, check watchdog
timer and cycle time, which may
be too long.

9F The cycle time is over
120 ms (or 130 ms to
6.5 s if watchdog timer
instruction is used.)

9F will be output when FALS(07) is
executed and the cycle time is
over 120 ms. Check the program.

Fatal Operating Errors

)��	� �������� Section 9-4

�,"

9-5 Error History Function

If the Error History Enable Bit (AR 0715) has been turned ON, then, when an
error occurs, the FAL no., the date, and the time (in hours, minutes, and sec-
onds, i.e., the values stored in AR 18 and AR 19) are sent to the System DM.
For details on how this function operates, refer to 3-6 DM Area.

9-6 Host Link Error Processing

This section describes errors that can occur in a computer-linked system em-
ploying the RS-232C interface, including errors processed by the host com-
puter (see 9-6-1 Error Control and 8-4 Host Link Communications Protocol).

expired?

Response?

ERROR?

Process

Send command.

Tries=n?

Error processing

Start timer.

Next command.

Time

Tries=m?

Timeout

response.

processing

N

Y

Y N

N

Y

Y

N

N

Y

Programs to monitor communication time and error handling need to be de-
veloped on the host computer. Be sure that these include processes that can
respond appropriately to errors and other abnormalities from the PC by tak-
ing into consideration the kinds of errors described in the sections listed
above.

6	�� $��')��	� ��	������� Section 9-6

�"4

9-6-1 Error Control

The host computer is responsible for ensuring system recovery after errors
occur in the Host Link System.

The host link interface runs the following checks to detect errors:

1, 2, 3... Parity check

Framing check
Overrun check

Format check

Entry data check (The start word, read word, etc., in the command for-
mat.)

FCS (An Exclusive OR check is performed on all command or response
data, from the unit number to the end of the text.)

Of the above commands, 1 to 3 are performed on a character by character
basis. Checks 4 to 6, however, are performed on each block (frame).

Transmit data in a multiple-link system is checked by means of a parity check
and a Frame Check Sequence (FCS). The FCS check is not performed in
single-link systems.

9-6-2 Invalid Processing

If the host link interface detects an error in a single-frame command or the
first frame of a command block, it will regard the command as invalid. The
command will not be processed and, after the terminator is received, an error
response will be sent to the host computer.

9-6-3 Process Interruption

If the host link interface detects an error in an intermediate frame, the com-
mands up to that point will be processed normally. Those following the erro-
neous frame, however, will not be processed. After the host link interface has
received the terminator of the erroneous block, it responds with a response
code that informs the host computer of the process interruption.

9-6-4 Time Monitoring

If the host link interface does not receive a delimiter or terminator, it cannot
send a response to the host computer. Similarly, if the computer does not
receive a delimiter or terminator, it cannot transmit further commands to the
host link interface. To allow transmission to alternate smoothly between the
computer and the host link interface, the process times need to be moni-
tored. It is therefore necessary to have a time-monitoring program on the
host computer side. Its purpose is to initiate remedial action if the right to
transmit is not transferred quickly enough.

9-6-5 Retries

An error response will be returned to the originating device if the host link
interface detects any communications line data that has been destroyed
(e.g., by noise). If, however, the Unit number has also been lost, no response
will be made at all. It is therefore necessary to have response monitoring and
retry processing in the host computer to check for error responses.

6	�� $��')��	� ��	������� Section 9-6

�"�

Appendix A
Standard Models

CPUs
Name Power supply Inputs Outputs Memory* Clock Model number

C20H 24 VDC 12, 24-VDC inputs 8 relay outputs with
k

RAM None C20H-C1DR-DE-V1
2 commons

y
sockets IC socket C20H-C2DR-DE-V1

One with 2 pts. 5 commons EEPROM C20H-C3DR-DE-V1
One with 10 pts. 4 with 1 pt. each RAM Built in C20H-C5DR-DE-V1

1 with 4 pts. IC socket C20H-C6DR-DE-V1
EEPROM C20H-C7DR-DE-V1

8 transistor outputs
i h k

RAM None C20H-C1DT-DE-V1
without sockets IC socket C20H-C2DT-DE-V1
5 commons EEPROM C20H-C3DT-DE-V1
4 with 1 pt. each RAM Built in C20H-C5DT-DE-V1
1 with 4 pts. IC socket C20H-C6DT-DE-V1

EEPROM C20H-C7DT-DE-V1
C28H 24 VDC 16, 24-VDC inputs 12 relay outputs with

k
RAM None C28H-C1DR-DE-V1

2 commons
y

sockets IC socket C28H-C2DR-DE-V1
One with 2 pts. 6 commons EEPROM C28H-C3DR-DE-V1
One with 14 pts. 4 with 1 pt. each RAM Built in C28H-C5DR-DE-V1

2 with 4 pts. IC socket C28H-C6DR-DE-V1
EEPROM C28H-C7DR-DE-V1

12 transistor outputs
i h k

RAM None C28H-C1DT-DE-V1
without sockets IC socket C28H-C2DT-DE-V1
6 commons EEPROM C28H-C3DT-DE-V1
4 with 1 pt. each RAM Built in C28H-C5DT-DE-V1
2 with 4 pts. IC socket C28H-C6DT-DE-V1

EEPROM C28H-C7DT-DE-V1
C40H 24 VDC 24, 24-VDC inputs 16 relay outputs with

k
RAM None C40H-C1DR-DE-V1

3 commons
y

sockets IC socket C40H-C2DR-DE-V1
One with 2 pts. 7 commons EEPROM C40H-C3DR-DE-V1
One with 8 pts. 4 with 1 pt. each RAM Built in C40H-C5DR-DE-V1
One with 14 pts. 3 with 4 pts. IC socket C40H-C6DR-DE-V1

EEPROM C40H-C7DR-DE-V1
16 transistor outputs

i h k
RAM None C40H-C1DT-DE-V1

without sockets IC socket C40H-C2DT-DE-V1
7 commons EEPROM C40H-C3DT-DE-V1
4 with 1 pt. each RAM Built in C40H-C5DT-DE-V1
3 with 4 pts. IC socket C40H-C6DT-DE-V1

EEPROM C40H-C7DT-DE-V1
C60H 24 VDC 32, 24-VDC inputs 28 relay outputs with

k
RAM None C60H-C1DR-DE-V1

3 commons
y

sockets IC socket C60H-C2DR-DE-V1
One with 2 pts. 8 commons EEPROM C60H-C3DR-DE-V1
One with 14 pts. 4 with 1 pt. each RAM Built in C60H-C5DR-DE-V1
One with 16 pts. 2 with 4 pts. IC socket C60H-C6DR-DE-V1

2 with 8 pts. EEPROM C60H-C7DR-DE-V1
28 transistor outputs

i h k
RAM None C60H-C1DT-DE-V1

without sockets IC socket C60H-C2DT-DE-V1
8 commons EEPROM C60H-C3DT-DE-V1
4 with 1 pt. each RAM Built in C60H-C5DT-DE-V1
2 with 4 pts. IC socket C60H-C6DT-DE-V1
2 with 8 pts EEPROM C60H-C7DT-DE-V1

����%��% �	%�
� Appendix A

�"�

*CPUs with IC sockets are not provided with Memory Chips; one of those listed in the following table must be
ordered separately. The memory in other types of CPUs cannot be changed.

Memory Chips
Memory chips can be set on on CPU models equipped with I/O sockets.

Name Specifications Model number

EPROM Chip 2764, 200 ns, write voltage: 21 V ROM-HD

2764, 200 ns, write voltage: 12.5 V ROM-HB-B

27128, 200 ns, write voltage: 12.5 V ROM-IB-B

RAM Chip 6264, 150 ns RAM-H

EEPROM Chip 28C64, 200 ns EEPROM-H

Only 27128 EPROM chips (ROM-IC-B) can be used if writing via the FIT’s PROM writer or via the C500-PRW06
connected to the GPC.

I/O Units
Name Power supply Inputs Outputs Accessories Model number

C20H 24 VDC 12, 24-VDC inputs
2 commons
One with 2 pts.
One with 10 pts.

8 relay outputs
with sockets
5 commons
4 with 1 pt. each
1 with 4 pts.

C20H-CN311
Connecting
Cable included.

C20H-EDR-D

8 transistor outputs
without sockets
5 commons
4 with 1 pt. each
1 with 4 pts.

C20H-EDT-D

C28H 24 VDC 16, 24-VDC inputs
2 commons
One with 2 pts.
One with 14 pts.

12 relay outputs
with sockets
6 commons
4 with 1 pt. each
2 with 4 pts.

C20H-CN311
Connecting
Cable included.

C28H-EDR-D

12 transistor outputs
without sockets
6 commons
4 with 1 pt. each
2 with 4 pts.

C28H-EDT-D

C40H 24 VDC 24, 24-VDC inputs
3 commons
One with 2 pts.
One with 8 pts.
One with 14 pts.

16 relay outputs
with sockets
7 commons
4 with 1 pt. each
3 with 4 pts.

C20H-CN311
Connecting
Cable included.

C40H-EDR-D

16 transistor outputs
without sockets
7 commons
4 with 1 pt. each
3 with 4 pts.

C40H-EDT-D

C60H 24 VDC 32, 24-VDC inputs
3 commons
One with 2 pts.
One with 14 pts.
One with 16 pts.

28 relay outputs
with sockets
8 commons
4 with 1 pt. each
2 with 4 pts.
2 with 8 pts.

C20H-CN311
Connecting
Cable included.

C60H-EDR-D

28 transistor outputs
without sockets
8 commons
4 with 1 pt. each
2 with 4 pts.
2 with 8 pts.

C60H-EDT-D

Note:

Appendix A����%��% �	%�
�

�"�

Connecting Cables
Name Specifications Model number

Connecting Cable* Cable length: 30 cm To connect CPUs C20H-CN311

Cable length: 60 cm and I/O Units. C20H-CN611

Cable length: 1 m C20H-CN121

Cable length: 2 m C20H-CN221

*Total length must be 6m or less.

DIN Products
Product Specifications Model No.

DIN Track Length: 50 cm; height: 7.3 mm PFP-50N

Length: 1 mm; height: 7.3 mm PFP-100N

Length: 1 m; height: 16 mm PFP-100N2

End Plate - PFP-M

Spacer - PFP-S

Peripheral Devices
Product Description Model No.

Programming Console Vertical, w/backlight
Connecting cable required; sold separately

C200H-PR027-E

Data Access Console Vertical, w/backlight
Connecting cable required; sold separately

C200H-DAC01

Programming and Data Access
C l C i C bl

For Handheld console, 2 m C200H-CN222g g
Console Connecting Cable For Handheld console, 4 m C200H-CN422

Panel Mounting Bracket For Handheld Programming Console or Data
Access Console

C200H-ATT01

Cassette Tape Recorder
Connecting Cable*

1 m SCYP0R-PLG01

PROM Writer* For C-series PCs (12.5/21 V) C500-PRW06

Floppy Disk Interface Unit* For C-series PCs 3G2C5-FDI03

Printer Interface Unit* For C-series PCs 3G2A5-PRT01-E

Memory Pack (for Printer
Interface)

With comment printing function C2000-MP103-EV3

M1R/M5R 3G2A5-MP003-E

POR 3G2A5-MP004-E

S6 3G2A5-MP005-E

V8 3G2A5-MP006-E

Printer Connecting Cable 2 m (also used for X-Y plotter) SCY-CN201

CPU-mounting Host Link Unit Connects to optical fiber cable (APF/PCF) 3G2A6-LK101-PEV1g

Connects to optical fiber cable (PCF) 3G2A6-LK101-EV1

RS-232C 3G2A6-LK201-EV1

RS-422 3G2A6-LK202-EV1

Peripheral Interface Unit For connecting PC to GPC or FIT C200H-IP004**

Connecting cable required; sold separately C200H-IP006

Connecting Cable To connect GPC to Peripheral Interface Unit 2 m 3G2A2-CN221

5 m C500-CN523

10 m C500-CN131

20 m C500-CN 231

30 m C500-CN331

����%��% �	%�
� Appendix A

�"#

Product Model No.Description

40 m C500-CN431

50 m C500-CN531

Graphic Programming Console 100 to 120 VAC, w/comment 3G2C5-GPC03-E

200 to 240 VAC, w/comment 3G2C5-GPC04-E

CRT Interface Unit* For connection between GPC and CRT 3G2C5-GDI01

Programming Console Base Unit Required to mount 3G2A5-IP004/
3G2A6-LK -(P)EV1 to C20H or C28H

30 m C200H-BP001
3G2A6-LKCCC-(P)EV1 to C20H or C28H
CPU. 50 m C200H-BP002

FIT Factory Intelligent Terminal FIT 10-SET11-E

*Used with GPC only.

**Programming Console Base Unit required to mount to C20H or C28H.

Graphic Programming Console (GPC)
Name Specifications Model number

GPC (LCD display) 32 kW, with comments 100 VAC 3G2C5-GPC03-E

200 VAC 3G2C5-GPC04-E

GPC Carrying Case With side pocket C500-CS001

GPC System Memory Cassette For C20H, C40H, C200H, C1000H, C2000H; printing
capability for DM and FM lists.

3G2C5-MP304-EV3

Factory Intelligent Terminal (FIT)
Name Specifications Model number

FIT 1. FIT Computer (FIT10-CPU01)
2. SYSMATE Ladder Pack (2 system disks, 1 data disk) (FIT10-MF101-EV4)
3. MS-DOS
4. GPC Communications Adapter (C500-IF001)
5. Peripheral Connecting Cable (3G2A2-CN221)
6. Power Cord and 3-pin or 2-pin plug
7. Carrying Case

FIT10-SET11-E

Ladder Support Software (LSS)
Name Specifications Model number

Ladder Support
S f

5.25”, 2D C500-SF711-EV3
Software 3.5”, 2DD C500-SF312-EV3

�"'

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Appendix B
Programming Instructions

This appendix provides tables listing the full range of ladder diagram programming instructions used with the
C20H/C28H/C40H/C60H. the first table summarizes all instructions and gives page references where more
detailed information can be found in the body of the manual. The second table gives the execution times for
the instructions for both ON and OFF execution conditions. The third part is divided into two tables and sum-
marizes the instructions, giving the ladder diagram symbol, a brief description, and the applicable data areas.
In all tables, the entries are listed alphanumerically. Instructions without function codes are given first in alpha-
betical order, according to the mnemonic. These are followed by the instructions with function codes which
are listed numerically, according to the function code.

Standard Instructions
The following table lists the standard programming instructions available for C-series PCs. A PC instruction is
entered either using the appropriate Programming Console key(s) (e.g., LD, AND, OR, NOT), or by using
function codes. To input an instruction using its function code, press FUN, the function code, and then WRITE.

Function Code Name Mnemonic Page

---- AND AND 50, 100

---- AND LOAD AND LD 53, 101

---- AND NOT AND NOT 50, 100

---- COUNTER CNT 117

---- LOAD LD 50, 100

---- LOAD NOT LD NOT 50, 100

---- OR OR 51, 100

---- OR LOAD OR LD 54, 101

---- OR NOT OR NOT 51, 100

---- OUTPUT OUT 52, 103

---- OUTPUT NOT OUT NOT 52, 103

---- TIMER TIM 112

00 NO OPERATION NOP ---

01 END END 52, 111

02 INTERLOCK IL 84, 108

03 INTERLOCK CLEAR ILC 84, 108

04 JUMP JMP 86, 110

05 JUMP END JME 86, 110

06 FAILURE ALARM FAL 197

07 SEVERE FAILURE ALARM FALS 197

08 STEP DEFINE STEP 189

09 STEP START SNXT 189

10 SHIFT REGISTER SFT 129

11 KEEP KEEP 106

12 REVERSIBLE COUNTER CNTR 120

13 DIFFERENTIATE UP DIFU 88, 104

14 DIFFERENTIATE DOWN DIFD 88, 104

15 HIGH-SPEED TIMER TIMH 116

16 WORD SHIFT WSFT 131

17 REVERSIBLE WORD SHIFT RWS 132

18 CYCLE TIME SCAN 198

��	�������� ���������	�� Appendix B

�"(

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Function Code PageMnemonicName

20 COMPARE CMP 145

21 MOVE MOV 139

22 MOVE NOT MVN 139

23 BCD-TO-BINARY BIN 151

24 BINARY-TO-BCD BCD 151

25 ARITHMETIC SHIFT LEFT ASL 134

26 ARITHMETIC SHIFT RIGHT ASR 134

27 ROTATE LEFT ROL 135

28 ROTATE RIGHT ROR 135

29 COMPLEMENT COM 182

30 BCD ADD ADD 164

31 BCD SUBTRACT SUB 165

32 BCD MULTIPLY MUL 168

33 BCD DIVIDE DIV 172

34 LOGICAL AND ANDW 183

35 LOGICAL OR ORW 183

36 EXCLUSIVE OR XORW 184

37 EXCLUSIVE NOR XNRW 185

38 INCREMENT INC 162

39 DECREMENT DEC 163

40 SET CARRY STC 163

41 CLEAR CARRY CLC 163

46 DISPLAY MESSAGE MSG 199

47 LONG MESSAGE LMSG 200

49 SET SYSTEM SYS 202

50 BINARY ADD ADB 177

51 BINARY SUBTRACT SBB 179

52 BINARY MULTIPLY MLB 181

53 BINARY DIVIDE DVB 182

60 REVERSIBLE DRUM COUNTER RDM 121

61 HIGH-SPEED COUNTER HDM 124

62 KEY INPUT KEY 63, 204

63 RS-232C PORT OUTPUT POUT 205

64 RS-232C PORT INPUT PIN 216

65 HOURS-TO-SECONDS HTS 152

66 SECONDS-TO-HOURS STH 153

67 BIT COUNTER BCNT 218

68 BLOCK COMPARE BCMP 148

69 HEXADECIMAL CONVERT HEX 154

70 BLOCK TRANSFER XFER 140

71 BLOCK SET BSET 141

73 DATA EXCHANGE XCHG 142

74 ONE DIGIT SHIFT LEFT SLD 136

75 ONE DIGIT SHIFT RIGHT SRD 136

76 4-TO-16 DECODER MLPX 156

77 16-TO-4 ENCODER DMPX 158

82 MOVE BIT MOVB 143

83 MOVE DIGIT MOVD 143

84 REVERSIBLE SHIFT REGISTER SFTR 137

Appendix B��	�������� ���������	��

�"�

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Function Code PageMnemonicName

86 ASCII CONVERT ASC 160

91 SUBROUTINE ENTER SBS 186

92 SUBROUTINE START SBN 186

93 RETURN RET 186

94 WATCHDOG TIMER REFRESH WDT 218

97 I/O REFRESH IORF 219

��	�������� ���������	�� Appendix B

�",

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Table: Instruction Execution Times

The execution time is given in microseconds unless otherwise stated.

Instruction Conditions ON execution time OFF execution time Page

LD --- 0.75 1.5 50, 100

LD NOT --- 0.75 1.5 50, 100

AND --- 0.75 1.5 50, 100

AND NOT --- 0.75 1.5 50, 100

OR --- 0.75 1.5 50, 100

OR NOT --- 0.75 1.5 50, 100

AND LD --- 0.75 1.5 53, 101

OR LD --- 0.75 1.5 54, 101

OUT --- 1.13 2.25 52, 103

OUT NOT --- 1.13 2.25 52, 103

TIM Constant for SV 2.25 R: 2.25

IL: 2.25

JMP: 2.25

112

=DM for SV R: 259

IL: 2.25

JMP: 2.25

CNT Constant for SV 2.25 R: 2.25

IL: 2.25

JMP: 2.25

117

=DM for SV R: 255

IL: 2.25

JMP: 2.25

NOP(00) --- 0.75 --- ---

END(01) --- 85 --- 52, 111

IL(02) --- 32 35 84, 108

ILC(03) --- 59 35 84, 108

JMP(04) --- 35 35 86, 110

JME(05) --- 45 35 86, 110

FAL(06) FAL(06) 00 (reset) 357 2.25 197

FAL(06) 01 to 99 247 2.25

FALS(07) --- 11.1 ms 2.25 197

STEP(08) --- 364 2.25 189

SNXT(09) --- 22 2.25 189

SFT(10) With 1-word shift register 227 R: 191

IL: 30

JMP: 30

129

With 250-word shift register 8.06 ms R: 1.81 ms

IL: 30

JMP: 30

KEEP(11) --- 1.13 --- 106

CNTR(12) Constant for SV 107 R: 85

IL: 49

120

=DM for SV 265 JMP: 49

Appendix B��	�������� ���������	��

�""

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Instruction PageOFF execution timeON execution timeConditions

DIFU(13) --- 105 Normal: 93

IL: 93

JMP: 84

88, 104

DIFD(14) --- 104 Normal: 92

IL: 92

JMP: 84

88, 104

TIMH(15) Interrupt, Constant for SV 149 R: 199

IL: 199

116

Normal cycle, Constant for SV 169 JMP: 73

Interrupt, =DM for SV 149 R: 291

IL: 291

Normal cycle, =DM for SV 169 JMP: 73

WSFT(16) When shifting 1 word 260 3 131

When shifting 1000 words using =DM 17.3 ms

RWS(17) When shifting 1 word 558 3.75 132

When shifting 1000 words using =DM 57.4 ms

SCAN(18) --- Actual cycle time 3.75 198

CMP(20) When comparing a constant to a word 162 3 145

When comparing two =DM 447

MOV(21) When transferring a constant to a word 113 3 139

When transferring =DM to =DM 321

MVN(22) When transferring a constant to a word 115 3 139

When transferring =DM to =DM 392

BIN(23) When converting a word to a word 197 3 151

When converting =DM to =DM 465

BCD(24) When converting a word to a word 198 3 151

When converting =DM to =DM 451

ASL(25) When shifting a word 62 2.25 134

When shifting =DM 190

ASR(26) When shifting a word 62 2.25 134

When shifting =DM 190

ROL(27) When rotating a word 66 2.25 135

When rotating =DM 194

ROR(28) When rotating a word 66 2.25 135

When rotating =DM 194

COM(29) When inverting a word 379 2.25 182

When inverting =DM 506

ADD(30) Constant + word � word 166 3.75 164

=DM + =DM � =DM 593

SUB(31) Constant + word � word 192 3.75 165

=DM -- =DM � =DM 600

MUL(32) Constant x word � word 634 3.75 168

=DM x =DM � word 1045

DIV(33) Word ÷ constant � word 737 3.75 172

=DM ÷ =DM � =DM 1156

��	�������� ���������	�� Appendix B

�44

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Instruction PageOFF execution timeON execution timeConditions

ANDW(34) Constant < word � word 162 3.75 183

=DM < =DM � =DM 557

ORW(35) Constant > word � word 162 3.75 183

=DM > =DM � =DM 560

XORW(36) Constant XORW word � word 162 3.75 184

=DM XORW =DM � =DM 560

XNRW(37) Constant XNRW word � word 163 3.75 185

=DM XNRW =DM � =DM 561

INC(38) When incrementing a word 79 2.25 162

When incrementing =DM 207

DEC(39) When decrementing a word 72 2.25 163

When decrementing =DM 260

STC(40) --- 21 1.5 163

CLC(41) --- 21 1.5 163

MSG(46) --- 88 2.25 199

LMSG(47) When outputting character string to
Programming Console from word

334 3.75 200

When outputting character string to
Programming Console set by =DM

414

When outputting character string to
RS-232C from word

751

When outputting character string to
RS-232C set by =DM

1679

SYS(49) When using command code 01. 1998 3.75 202

ADB(50) Constant + word � word 208 3.75 177

=DM + =DM � =DM 604

SBB(51) Constant -- word � word 208 3.75 179

=DM -- =DM � =DM 604

MLB(52) Constant x word � word 283 3.75 181

=DM x =DM � =DM 658

DVB(53) Word ÷ constant � word 516 3.75 182

=DM ÷ =DM � =DM 927

RDM(60) When comparing 1 range with words 719 719 121

When comparing max. ranges with =DM 18.0 ms 18.0 ms

HDM(61) When comparing 1 range with words 1079 3.75 124

When comparing max. ranges with =DM 18.5 ms

KEY(62) When using words 464 3.75 63, 204

When using =DM 489

POUT(63) When outputting 0 bytes 464 3.75 205

When outputting 200 bytes of =DM 4.78 ms

PIN(64) When inputting 0 bytes 646 3.75 216

When inputting 200 bytes of =DM 4.95 ms

HTS(65) Word conversion 468 3.75 152

=DM conversion (converting max. time) 60.6 ms

STH(66) Word conversion 572 3.75 153

=DM conversion (converting max.
seconds)

175.3 ms

Appendix B��	�������� ���������	��

�4�

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Instruction PageOFF execution timeON execution timeConditions

BCNT(67) When counting 1 word 531 3.75 218

When counting 1000 words using =DM 253.6 ms

BCMP(68) Comparing constant to word-designated
table

823 3.75 148

Comparing =DM � =DM-designated table 17 ms

HEX(69) Converting word to word 433 3.75 154

Converting =DM to =DM 1.20 ms

XFER(70) When transferring 1 word 433 3.75 140

When transferring 1000 words using =DM 47.1 ms

BSET(71) When setting a constant to 1 word 280 3.75 141

When setting =DM ms to 1,000 words
using =DM

1.56 ms

XCHG(73) Between words 215 3 142

Between =DM 408

SLD(74) Shifting 1 word 211 3 136

Shifting 1,000 words using =DM 25.3 ms

SRD(75) Shifting 1 word 208 3 136

Shifting 1,000 words using =DM 25.3 ms

MLPX(76) When decoding word to word 337 3.75 156

When decoding =DM to =DM 708

DMPX(77) When encoding a word to a word 404 3.75 158

When encoding =DM to =DM 758

MOVB (82) When transferring word to a word 172 3.75 143

When transferring =DM to =DM 557

MOVD(83) When transferring word to a word 210 3.75 143

When transferring =DM to =DM 459

SFTR(84) When shifting 1 word 475 3.75 137

When shifting 1000 DM words using =DM 18.7 ms

ASC(86) Word � word 385 3.75 160

=DM � =DM 746

SBS(91) --- 320 2.25 186

SBN(92) --- --- --- 186

RET(93) --- 207 1.5 186

WDT(94) --- 27 2.25 218

IORF(97) 1-word refresh 675 3 219

30-word refresh 4 ms

��	�������� ���������	�� Appendix B

�4�

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Basic Instructions
Name

Mnemonic
Symbol Function Operand Data Areas Page

AND
AND B

Logically ANDs the status of the desig-
nated bit with the current execution condi-
tion.

B:
IR
SR
HR
AR
LR
TC

50, 100

AND LOAD
AND LD

Logically ANDs the resultant execution
conditions of the preceding logic blocks.

None 53, 101

AND NOT
AND NOT

B

Logically ANDs the inverse of the desig-
nated bit with the current execution condi-
tion.

B:
IR
SR
HR
AR
LR
TC

50, 100

COUNTER
CNT

CNT N

SV

CP

R

A decrementing counter. SV: 0 to 9999;
CP: count pulse; R: reset input. The TC bit
is entered as a constant.

N:
TC

SV:
IR
HR
AR
LR
DM
#

117

LOAD
LD

B

Defines the status of bit B as the execution
condition for subsequent operations in the
instruction line.

B:
IR
SR
HR
AR
LR
TC
TR

50, 100

LOAD NOT
LD NOT

B

Defines the status of the inverse of bit B as
the execution condition for subsequent op-
erations in the instruction line.

B:
IR
SR
HR
AR
LR
TC

50, 100

OR
OR

B

Logically ORs the status of the designated
bit with the current execution condition.

B:
IR
SR
HR
AR
LR
TC

51, 100

Appendix B��	�������� ���������	��

�4�

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

PageOperand Data AreasFunctionSymbol

OR LOAD
OR LD

Logically ORs the resultant execution con-
ditions of the preceding logic blocks.

None 54, 101

OR NOT
OR NOT

B

Logically ORs the inverse of the desig-
nated bit with the execution condition.

B:
IR
SR
HR
AR
LR
TC

51, 100

OUTPUT
OUT

B

Turns ON B for an ON execution condition;
turns OFF B for an OFF execution condi-
tion.

B:
IR
SR
HR
AR
LR
TR

52, 103

OUTPUT NOT
OUT NOT

B

Turns OFF B for an ON execution condi-
tion; turns ON B for an OFF execution con-
dition.

B:
IR
SR
HR
AR
LR

52, 103

TIMER
TIM

TIM N

SV

ON-delay (decrementing) timer operation.
Set value: 000.0 to 999.9 s. The same TC
bit cannot be assigned to more than one
timer/counter. The TC bit is entered as a
constant.

N:
TC

SV:
IR
HR
AR
LR
DM
#

112

��	�������� ���������	�� Appendix B

�4#

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Special Instructions
Name

Mnemonic
Symbol Function Operand Data

Areas
Page

NO OPERATION
NOP(00)

None

Nothing is executed and program opera-
tion moves to the next instruction.

None ---

END
END(01)

END(01)

Required at the end of each program. In-
structions located after END(01) will not be
executed.

None 52,
111

INTERLOCK
IL(02)
INTERLOCK
CLEAR
ILC(03)

IL(02)

ILC(03)

If an interlock condition is OFF, all outputs
and all timer PVs between the current
IL(02) and the next ILC(03) are turned OFF
or reset, respectively. Other instructions
are treated as NOP. Counter PVs are main-
tained. If the execution condition is ON, ex-
ecution continues normally.

None 84,
108

JUMP
JMP(04)
JUMP END
JME(05)

NJMP(04)

JME(05) N

When the execution condition for the
JMP(04) instruction is ON, all instructions
between JMP(04) and the corresponding
JME(05) are to be ignored or treated as
NOP(00). For direct jumps, the corre-
sponding JMP(04) and JME(05) instruc-
tions have the same N value in the range 01
through 49. Direct jumps are usable only
once each per program (i.e., N is 01
through 49 can be used only once each)
and the instructions between the JUMP
and JUMP END instructions are ignored;
00 may be used as many times as neces-
sary, instructions between JMP 00 and the
next JME 00 are treated as NOP, thus in-
creasing cycle time, as compared with di-
rect jumps.

N:
00 to 49

86,
110

FAILURE ALARM
(@)FAL(06)

FAL(06) N

Assigns a failure alarm code to the given
execution condition.When N can be given
a value between 01 and 99 to indicate that
a non-fatal error (i.e., one that will not stop
the CPU) has occurred. This is indicated by
the PLC outputting N (the FAL number) to
the FAL output area. To reset the FAL area,
N can be defined as 00. This will cause all
previously recorded FAL numbers in the
FAL area to be deleted. FAL data sent after
a 00 will be recorded in the normal way. The
same code numbers can be used for both
FAL(06) and FALS(07).

N:
00 to 99

197

SEVERE
FAILURE ALARM
FALS(07) FALS(07) N

A fatal error is indicated by outputting N to
the FAL output area and the CPU is
stopped. The same FAL numbers are used
for both FAL(06) and FALS(07).

N:
01 to 99

197

STEP DEFINE
STEP(08)

STEP(08)B

When used with a control bit (B), defines
the start of a new step and resets the pre-
vious step. When used without B, it defines
the end of step execution.

B:
IR
HR
AR
LR

189

Appendix B��	�������� ���������	��

�4'

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

PageOperand Data
Areas

FunctionSymbol

STEP START
SNXT(09)

SNXT(09) B

Used with a control bit (B) to indicate the
end of the step, reset the step, and start the
next step which has been defined with the
same control bit.

B:
IR
HR
AR
LR

189

SHIFT REGISTER
SFT(10) I

P

R

SFT(10)
St
E

Creates a bit shift register for data from the
starting word (St) through to the ending
word (E). I: input bit; P: shift pulse; R: reset
input. St must be less than or equal to E. St
and E must be in the same data area.

E St
15 1500

IN
00

St/E:
IR
HR
AR
LR

129

KEEP
KEEP(11)

S

KEEP(11)

BR

Defines a bit (B) as a latch, controlled by
the set (S) and reset (R) inputs.

B:
IR
HR
AR
LR

106

REVERSIBLE
COUNTER
CNTR (12)

II

DI

R
N

SV

CNTR(12)

Increases or decreases the PV by one
whenever the increment input (II) or decre-
ment input (DI) signals, respectively, go
from OFF to ON. SV: 0 to 9999; R: reset in-
put. Each TC bit can be used for one timer/
counter only. The TC bit is entered as a
constant.

N:
TC

SV:
IR
SR
HR
AR
LR
DM
#

120

DIFFERENTIATE
UP
DIFU(13)
DIFFERENTIATE
DOWN
DIFD(14)

DIFU(13)

DIFD(14)

B

B

DIFU(13) turns ON the designated bit (B)
for one cycle on reception of the leading
(rising) edge of the input signal; DIFD(14)
turns ON the bit for one cycle on reception
of the trailing (falling) edge.

B:
IR
HR
AR
LR

88,
104

HIGH-SPEED
TIMER
TIMH(15) TIMH(15) N

SV

A high-speed, ON-delay (decrementing)
timer. SV: 00.02 to 99.99 s. Each TC bit can
be assigned to only one timer or counter.
The TC bit is entered as a constant.

N:
TC

SV:
IR
SR
HR
AR
LR
HR
#

116

WORD SHIFT
(@)WSFT(16)

WSFT(16)

E
St

The data in the words from the starting
word (St) through to the ending word (E), is
shifted left in word units, writing all zeros
into the starting word. St must be less than
or equal to E, and St and E must be in the
same data area.

St/E:
IR
HR
AR
LR
DM

131

��	�������� ���������	�� Appendix B

�4(

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

PageOperand Data
Areas

FunctionSymbol

REVERSIBLE
WORD SHIFT
(@)RWS(17) RWS(17)

E
St
C

Creates and controls a reversible non-
synchronous word shift register between
St and E. Exchanges the content of a word
containing zero with the content of either
the preceding or following word, depend-
ing on the shift direction. Bits 13, 14, and
15 of control word C determine the mode
of operation of the register according to the
following: The shift direction is determined
by bit 13 (OFF shifts the non-zero data to
higher addressed words; ON to lower ad-
dressed words). Bit 14 is the register en-
able bit (ON for shift enabled). Bit 15 is the
reset bit (if bit 15 is ON, the register will be
set to zero between St and E when the in-
struction is executed with bit 14 also ON).
St and E must be in the same data area.

C:
IR
SR
HR
AR
LR
TC
DM
#

St/E:
IR
SR
HR
AR
LR
TC
DM

132

CYCLE TIME
(@)SCAN(18) SCAN(18)

Mi

Sets the minimum cycle time, Mi, in tenths
of milliseconds. The possible setting range
is from 0 to 999.0 ms. If the actual cycle
time is less than the time set using
SCAN(18), the CPU will wait until the des-
ignated time has elapsed before starting
the next cycle.

Mi:
IR
SR
HR
AR
LR
TC
DM
#

---:
Not used.

198

COMPARE
(@)CMP(20)

CMP(20)
Cp1
Cp2

Compares the data in two 4-digit hexadeci-
mal words (Cp1 and Cp2) and outputs re-
sult to the GR, EQ, or LE Flags.

Cp1/Cp2:
IR
SR
HR
AR
LR
TC
DM
#

145

MOVE
(@)MOV(21)

MOV(21)
S
D

Transfers data from source word, (S) to
destination word (D).

S:
IR
SR
HR
AR
LR
TC
DM
#

D:
IR
HR
AR
LR
DM

139

MOVE NOT
(@)MVN(22)

MVN(22)
S
D

Transfers the inverse of the data in the
source word (S) to destination word (D).

S:
IR
SR
HR
AR
LR
TC
DM
#

D:
IR
HR
AR
LR
DM

139

Appendix B��	�������� ���������	��

�4�

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

PageOperand Data
Areas

FunctionSymbol

BCD-TO-BINARY
(@)BIN(23)

BIN(23)
S
R

Converts 4-digit, BCD data in source word
(S) into 16-bit binary data, and outputs con-
verted data to result word (R).

S

x100

x101

x102

x103

x160

x161

x162

x163

(BCD) (BIN)
R

S:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

151

BINARY-TO-BCD
(@)BCD(24)

BCD(24)
S
R

Converts binary data in source word (S)
into BCD, and outputs converted data to re-
sult word (R).

x160

x161

x162

x163

x101

x102

x103

S R
(BIN) (BCD)

x100

S:
IR
SR
HR
AR
LR
DM

R:
IR
HR
AR
LR
DM

151

ARITHMETIC
SHIFT LEFT
(@)ASL(25)

ASL(25)
Wd

Each bit within a single word of data (Wd)
is shifted one bit to the left, with zero written
to bit 00 and bit 15 moving to CY.

Wd

15 00

CY 0

Wd:
IR
HR
AR
LR
DM

134

ARITHMETIC
SHIFT RIGHT
(@)ASR(26)

ASR(26)
Wd

Each bit within a single word of data (Wd)
is shifted one bit to the right, with zero writ-
ten to bit 15 and bit 00 moving to CY.

0 Wd CY

15 00

Wd:
IR
HR
AR
LR
DM

134

ROTATE LEFT
(@)ROL(27)

ROL(27)
Wd

Each bit within a single word of data (Wd)
is moved one bit to the left, with bit 15 mov-
ing to carry (CY), and CY moving to bit 00.

15 00
CYWd

Wd:
IR
HR
AR
LR
DM

135

ROTATE RIGHT
(@)ROR(28)

ROR(28)
Wd 15 00

CY Wd

Each bit within a single word of data (Wd)
is moved one bit to the right, with bit 00
moving to carry (CY), and CY moving to bit
15.

Wd:
IR
HR
AR
LR
DM

135

��	�������� ���������	�� Appendix B

�4,

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

PageOperand Data
Areas

FunctionSymbol

COMPLEMENT
(@)COM(29)

COM(29)
Wd

Inverts bit status of one word (Wd) of data,
changing 0s to 1s, and vice versa.

Wd Wd

Wd:
IR
HR
AR
LR
DM

182

BCD ADD
(@)ADD(30)

ADD(30)
Au
Ad
R

CY CY

Adds two 4-digit BCD values (Au and Ad)
and content of CY, and outputs the result to
the specified result word (R).

Au + Ad + R

Au/Ad:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

164

BCD SUBTRACT
(@)SUB(31)

SUB(31)
Mi
Su
R

Subtracts both the 4-digit BCD subtrahend
(Su) and content of CY, from the 4-digit
BCD minuend (Mi) and outputs the result to
the specified result word (R).

CYMi -- Su -- R CY

Mi/Su:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

165

BCD MULTIPLY
(@)MUL(32)

MUL(32)
Md
Mr
R

Multiplies the 4-digit BCD multiplicand
(Md) and 4-digit BCD multiplier (Mr), and
outputs the result to the specified result
words (R and R + 1). R and R + 1 must be
in the same data area.

Md x Mr R + 1 R

Md/Mr:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

168

BCD DIVIDE
(@)DIV(33)

R

DIV(33)
Dd
Dr

Divides the 4-digit BCD dividend (Dd) by
the 4-digit BCD divisor (Dr), and outputs
the result to the specified result words. R
receives the quotient; R + 1 receives the re-
mainder. R and R + 1 must be in the same
data area.

R + 1 RDd ÷ Dr

Dd/Dr:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

172

LOGICAL AND
(@)ANDW(34)

ANDW(34)
I1
I2
R

Logically ANDs two 16-bit input words (I1
and I2) and sets the bits in the result word
(R) if the corresponding bits in the input
words are both ON.

I1/I2:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

183

Appendix B��	�������� ���������	��

�4"

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

PageOperand Data
Areas

FunctionSymbol

LOGICAL OR
(@)ORW(35)

ORW(35)
I1
I2
R

Logically ORs two 16-bit input words (I1
and I2) and sets the bits in the result word
(R) when one or both of the corresponding
bits in the input words is/are ON.

I1/I2:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

183

EXCLUSIVE OR
(@)XORW(36) XORW(36)

I1
I2
R

Exclusively ORs two 16-bit input words (I1
and I2) and sets the bits in the result word
(R) when the corresponding bits in input
words differ in status.

I1/I2:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

184

EXCLUSIVE NOR
(@)XNRW(37)

I1
I2
R

XNRW(37)

Exclusively NORs two 16-bit input words
(I1 and I2) and sets the bits in the result
word (R) when the corresponding bits in
both input words have the same status.

I1/I2:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

185

INCREMENT
(@)INC(38)

INC(38)
Wd

Increments the value of a 4-digit BCD word
(Wd) by one, without affecting carry (CY).

Wd:
IR
HR
AR
LR
DM

162

DECREMENT
(@)DEC(39)

DEC(39)
Wd

Decrements the value of a 4-digit BCD
word by 1, without affecting carry (CY).

Wd:
IR
HR
AR
LR
DM

163

SET CARRY
(@)STC(40)

STC(40)

Sets the Carry Flag (i.e., turns CY ON). None 163

CLEAR CARRY
(@)CLC(41)

CLC(41)

Clears the Carry Flag (i.e, turns CY OFF). None 163

��	�������� ���������	�� Appendix B

��4

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

PageOperand Data
Areas

FunctionSymbol

DISPLAY
MESSAGE
(@)MSG(46)

MSG(46)
FM

Displays eight words of ASCII code, start-
ing from FM, on the Programming Console
or GPC. All eight words must be in the
same data area.

FM

FM+ 7

C D

A B

D P

ABCD........DP

FM:
IR
HR
AR
LR
TC
DM
#

199

LONG MESSAGE
(@)LMSG(47)

LMSG(47)
S
D

Outputs a 32-character message to either
a Programming Console, or a device con-
nected via the RS-232C interface. The
output message must be in ASCII begin-
ning at address S. The destination of the
message is designated in D: 000 specifies
that the message is to be output to the
GPC; 001 specifies the RS-232C inter-
face, starting with the leftmost byte; and
002 specifies the RS-232C interface,
starting from the rightmost byte.

S:
IR
HR
AR
LR
TC
DM

D:
#000
#001
#002

---:
Not
used.

200

SET SYSTEM
(@)SYS(49) SYS(49)

P

Used to either control certain operating pa-
rameters, or to execute the system com-
mands that can be executed from the AR
area.
The contents of the leftmost 8 bits of P de-
termine which function SYS(49) will have.
If they contain A3, bit 00 specifies whether
the battery will be checked, and bit 07
specifies whether I/O status will be main-
tained on start up. Bit 06 specifies whether
the Force Status Hold Bit is set.
To be effective SYS(49) must be pro-
grammed at address 00001 with LD AR
1001 at address 00000.
If the leftmost 8 bits of P are 00, one of
seven possible System Commands, as
specified by the rightmost 8 bits, will be ex-
ecuted (this option is not available with
C200H PLCs). These commands can be
used to set or back-up the contents of the
Parameter Area (in the DM area).

P:
#

---:
Not used.

202

Appendix B��	�������� ���������	��

���

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

PageOperand Data
Areas

FunctionSymbol

BINARY ADD
(@)ADB(50)

ADB(50)
Au
Ad
R

Adds the 4-digit augend (Au), 4-digit ad-
dend (Ad), and content of CY and outputs
the result to the specified result word (R).

Ad

Au

+

+ CY

R

CY

Au/Ad:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

177

BINARY
SUBTRACT
(@)SBB(51)

SBB(51)
Mi
Su
R

Subtracts the 4-digit hexadecimal subtra-
hend (Su) and content of carry, from the
4-digit hexadecimal minuend (Mi), and out-
puts the result to the specified result word
(R).

Mi

Su

CY

R

CY

��

��

Mi/Su:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

179

BINARY
MULTIPLY
(@)MLB(52) MLB(52)

Md
Mr
R

Multiplies the 4-digit hexadecimal multipli-
cand (Md) and 4-digit multiplier (Mr), and
outputs the 8-digit hexadecimal result to
the specified result words (R and R+1). R
and R+1 must be in the same data area.

Md

Mr

R

R+1

X

Quotient

Remainder

Md/Mr:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

181

BINARY DIVIDE
(@)DVB(53)

DVB(53)
Dd
Dr
R

Divides the 4-digit hexadecimal dividend
(Dd) by the 4-digit divisor (Dr), and outputs
result to the designated result words (R
and R + 1). R and R + 1 must be in the same
data area.

D
d
Dr

R

R+ 1

÷

Quotient

Remainder

Dd/Dr:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR

182

��	�������� ���������	�� Appendix B

���

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

PageOperand Data
Areas

FunctionSymbol

REVERSIBLE
DRUM COUNTER
(@)RDM(60)

RDM(60)
N
T
R

Creates a reversible ring counter in TC
500 to TC 511 that counts from 0 to 9999,
compares the PV to a table of ranges, and
turns ON corresponding bits in R whenev-
er the PV is within one of the ranges given
in the table.
The size of the table is determined by the
value of n, specified by bits 00 to 07 of T.
The table starting at T must be within one
data area, and all table words from T+1 on
must be in BCD.

N:
TC 500
through
TC 511

T:
IR
SR
HR
AR
LR
TC
DM

R:
IR
SR
HR
AR
LR
TC
DM

121

HIGH-SPEED
DRUM COUNTER
HDM(61)

HDM(61)
T
R

Compares the PV of the high-speed count-
er (CNT 511) to a table of ranges, and turns
ON corresponding bits in R whenever the
PV is within one of the ranges given in the
table.
The size of the table is determined by the
value of n, specified by bits 00 to 07 of T.
The table starting at T must be within one
data area, and all table words from T+1 on
must be in BCD.

T:
IR
SR
HR
AR
LR
TC
DM

R:
IR
SR
HR
AR
LR
TC
DM

---:
Not
used.

124

KEY INPUT
(@)KEY(62) KEY(62)

S

Performs Programming Console opera-
tions from within the program. S desig-
nates the first word containing a key code.
The key codes will produce the same ef-
fect as pressing the equivalent Program-
ming Console keys.

S:
#

---:
Not used.

63,
204

RS-232C PORT
OUTPUT
(@)POUT(63)

POUT(63)
S
C
B

Outputs the B bytes of data in S to
S+(B÷2)--1 through the RS-232C port. The
control number, C, determines whether the
leftmost (C=#0000) or rightmost
(C=#0001) bytes in the words will be output
first.

S:
IR
SR
HR
AR
LR
TC
DM

C:
#

B:
IR
HR
AR
LR
TC
DM
#

205

RS-232C PORT
INPUT
(@)PIN(64)

PIN(64)
D
C
B

Writes B bytes of data received through the
RS-232C port to words beginning at D. The
control number, C, determines whether the
leftmost (C=#0000) or rightmost
(C=#0001) byte in the words was input first.

D:
IR
HR
AR
LR
TC
DM

C:
#

B:
IR
HR
AR
LR
TC
DM
#

216

HOURS-TO-
SECONDS
(@)HTS(65)

HTS(65)
S
R

Converts a time given in hours/minutes/
seconds (S and S+1) to an equivalent time
in seconds only (R and R+1). S and S+1
must be BCD and within one data area. R
and R+1 must also be within one data
area.

S:
IR
SR
HR
AR
LR
TC
DM

R:
IR
SR
HR
AR
LR
TC
DM

---:
Not
used.

152

SECONDS-TO-
HOURS
(@)STH(66)

STH(66)
S
R

Converts a time given in seconds (S and
S+1) to an equivalent time in hours/minu-
tes/seconds (R and R+1). S and S+1 must
be BCD between 0 and 35,999,999, and
within the same data area. R and R+1
must also be within one data area.

S:
IR
SR
HR
AR
LR
TC
DM

R:
IR
SR
HR
AR
LR
TC
DM

---:
Not
used.

153

Appendix B��	�������� ���������	��

���

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

PageOperand Data
Areas

FunctionSymbol

BIT COUNTER
(@)BCNT(67) BCNT(67)

N
SB
R

Counts the number of ON bits in one or
more words (SB is the beginning source
word) and outputs the result to the speci-
fied result word (R). N gives the number of
words to be counted. All words in which bit
are to be counted must be in the same data
area.

N:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
TC
DM

SB:
IR
SR
HR
AR
LR
TC
DM

218

BLOCK
COMPARE
(@)BCMP(68) BCMP(68)

S
CB
R

Compares a 1-word binary value (S) with
the 16 ranges given in the comparison
table (CB is the starting word of the com-
parison block). If the value falls within any
of the ranges, the corresponding bits in the
result word (R) will be set. The comparison
block must be within one data area.

S

CB CB+1
CB+2 CB+3
CB+4 CB+5

CB+30 CB+31

1
0
1

0

Lower limit Upper limit

Lower limit ≤ S ≤ Upper limit 1

Re-
sult

S:
IR
SR
HR
AR
LR
TC
DM
#

CB:
IR
SR
HR
LR
TC
DM

R:
IR
HR
AR
LR
TC
DM

148

HEXADECIMAL
CONVERT
(@)HEX(69)

HEX(69)
S
Di
D

Converts the ASCII codes in words begin-
ning with S according to specifications in
Di and outputs the hexadecimal equiva-
lents to words beginning with D.

Di specifications: Digit 0: first digit to con-
vert; digit 1: number of ASCII codes to con-
vert; digit 2: first half of S to convert; and
digit 3: parity (0: none; 1: even; 2: odd).

S:
IR
SR
HR
AR
LR
TC
DM

Di:
IR
HR
AR
LR
TC
DM
#

D:
IR
HR
AR
LR
DM

154

BLOCK
TRANSFER
(@)XFER(70) XFER(70)

N
S
D

Moves the content of several consecutive
source words (S gives the address of the
starting source word) to consecutive desti-
nation words (D is the starting destination
word). All source words must be in the
same data area, as must all destination
words. Transfers can be within one data
area or between two data areas, but the
source and destination words must not
overlap.

S

S + 1

D

D + 1

S+N--1 D+N--1

No. of
Words

N:
IR
SR
HR
AR
LR
TC
DM
#

S :
IR
HR
AR
LR
TC
DM

D:
IR
SR
HR
AR
LR
TC
DM
#

140

��	�������� ���������	�� Appendix B

��#

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

PageOperand Data
Areas

FunctionSymbol

BLOCK SET
(@)BSET(71)

BSET(71)
S
St
E

Copies the content of one word or constant
(S) to several consecutive words (from the
starting word, St, through to the ending
word, E). St and E must be in the same data
area.

S St

E

St/E:
IR
HR
AR
LR
TC
DM

S:
IR
SR
HR
AR
LR
TC
DM
#

141

DATA
EXCHANGE
(@)XCHG(73) XCHG(73)

E1
E2

Exchanges the contents of two words (E1
and E2).

E1 E2

E1/E2:
IR
HR
AR
LR
TC
DM

142

ONE DIGIT SHIFT
LEFT
(@)SLD(74) SLD(74)

St
E

Shifts all data, between the starting word
(St) and ending word (E), one digit (four
bits) to the left, writing zero into the
rightmost digit of the starting word. St and
E must be in the same data area.

E

St

St + 1

0

St/E:
IR
HR
AR
LR
DM

136

ONE DIGIT SHIFT
RIGHT
(@)SRD(75)

SRD(75)
E
St

0 St

Shifts all data, between starting word (St)
and ending word (E), one digit (four bits) to
the right, writing zero into the leftmost digit
of the ending word. St and E must be in the
same data area.

E

E -- 1

St/E:
IR
HR
AR
LR
DM

136

4-TO-16
DECODER
(@)MLPX(76) MLPX(76)

S
Di
R

Converts up to four hexadecimal digits in
the source word (S), into decimal values
from 0 to 15, and turns ON the correspond-
ing bit(s) in the result word(s) (R). There is
one result word for each converted digit.
Digits to be converted are designated by
Di. (The rightmost digit specifies the first
digit. The next digit to the left gives the
number of digits to be converted minus 1.
The two leftmost digits are not used.)

S 0 to F

R

0015

S:
IR
SR
HR
AR
LR
TC
DM

Di:
IR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

156

Appendix B��	�������� ���������	��

��'

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

PageOperand Data
Areas

FunctionSymbol

16-TO-4
ENCODER
(@)DMPX(77) DMPX(77)

S
R
Di

Determines the position of the leftmost ON
bit in the source word(s) (starting word: S)
and turns ON the corresponding bit(s) in
the specified digit of the result word (R).
One digit is used for each source word.
Digits to receive the converted values are
designated by Di. (The rightmost digit
specifies the first digit. The next digit to left
gives the number of words to be converted
minus 1. The two leftmost digits are not
used.)

S

15 00

0 to FR

S:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

Di:
IR
HR
AR
LR
TC
DM
#

158

MOVE BIT
(@)MOVB(82)

MOVB(82)
S
Bi
D

Transfers the designated bit of the source
word or constant (S) to the designated bit
of the destination word (D). The rightmost
two digits of the bit designator (Bi) specify
the source bit. The two leftmost digits spec-
ify the destination bit.

S

D

S:
IR
SR
HR
AR
LR
DM
#

Bi:
IR
HR
AR
LR
TC
DM
#

D:
IR
HR
AR
LR
DM

143

MOVE DIGIT
(@)MOVD(83)

MOVD(83)
S
Di
D

Moves hexadecimal content of up to four
specified 4-bit source digit(s) from the
source word to the specified destination
digit(s) (S gives the source word address.
D specifies the destination word). Specific
digits within the source and destination
words are defined by the Digit Designator
(Di) digits. (The rightmost digit gives the
first source digit. The next digit to the left
gives the number of digits to be moved. The
next digit specifies the first digit in the
destination word.)

S

D

15 00

S:
IR
SR
HR
AR
LR
TC
DM
#

Di:
IR
HR
AR
LR
TC
DM
#

D:
IR
HR
AR
LR
TC
DM

143

��	�������� ���������	�� Appendix B

��(

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

PageOperand Data
Areas

FunctionSymbol

REVERSIBLE
SHIFT
REGISTER
(@)SFTR(84)

SFTR(84)
C
St
E

Shifts bits in the specified word or series of
words either left or right. Starting (St) and
ending words (E) must be specified. Con-
trol word (C) contains shift direction, reset
input, and data input. (Bit 12: 0 = shift right,
1 = shift left. Bit 13 is the value shifted into
the source data, with the bit at the opposite
end being moved to CY. Bit 14: 1 = shift en-
abled, 0 = shift disabled. If bit 15 is ON
when SFTR(89) is executed with an ON
condition, the entire shift register and CY
will be set to zero.) St and E must be in the
same data area and St must be less than
or equal to E.

CY

E St

15

00

CY

E

IN

St IN

0
0

1
1

1
2

1
3

1
4

1
5

Not usedC

00 15 00

15 00 15

St/E/C:
IR
HR
AR
TC
LR
DM

137

ASCII CONVERT
(@)ASC(86)

ASC(86)
S
Di
D

Converts hexadecimal digits from the
source word (S) into 8-bit ASCII values,
starting at leftmost or rightmost half of the
starting destination word (D). The right-
most digit of Di designates the first source
digit. The next digit to the left gives the
number of digits to be converted. The next
digit specifies the whether the data is to be
transferred to the rightmost (0) or leftmost
(1) half of the first destination word. The
leftmost digit specifies parity:

0: none,
1: even, or
2: odd.

S

D 8-bit
data

0 to F

15 08 07 00

S:
IR
SR
HR
AR
LR
TC
DM

Di:
IR
HR
LR
TC
DM
#

D:
IR
HR
LR
DM

160

SUBROUTINE
ENTER
(@)SBS(91) SBS(91) N

Calls subroutine N. Moves program opera-
tion to the specified subroutine.

N:
00 to 49

186

SUBROUTINE
START
SBN(92) SBN(92) N

Marks the start of subroutine N. N:
00 to 49

186

Appendix B��	�������� ���������	��

���

IR SR HR TR AR LR TC DM #

00000 to 24615 24700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

PageOperand Data
Areas

FunctionSymbol

RETURN
RET(93) RET(93)

Marks the end of a subroutine and returns
control to the main program.

None 186

WATCHDOG
TIMER
REFRESH
(@)WDT(94)

WDT(94) T

Sets the maximum and minimum limits for
the watchdog timer (normally 0 to 130 ms).
New limits:
Maximum time = 130 + (100 x T)
Minimum time = 130 + (100 x (T--1))

T:
0 to 63

218

I/O REFRESH
(@)IORF(97)

IORF(97)
St
E

Refreshes all I/O words between the start
(St) and end (E) words. Only I/O words may
be designated. Normally these words are
refreshed only once per cycle, but refresh-
ing words before use in an instruction can
increase execution speed. St must be less
than or equal to E.

St/E:
IR

219

��"

Appendix C
Programming Console Operations

The table below lists the Programming Console operations, a brief description, and the page on which they
appear in the body of this manual. All operations are described briefly, and the key sequence for inputting
them given, in the tables which form the second part of this appendix.

Name Function Page

Password Input Prompts the user for the access password. 66

Buzzer ON/OFF Controls whether the buzzer will sound for keystroke inputs. 67

Data Clear Used to erase data, either selectively or totally, from the Program Memory and the IR,
AR, HR, DM, and TC areas.

67

Program Header Display Displays the program name, version number, and the date of last revision. 244

Address Designation Displays the specified address. 70

Program Input Used to edit or input program instructions. 71

Program Read Allows the user to scroll through the program address-by-address. In RUN and MONI-
TOR modes, status of bits is also given.

70

Program Search Searches a program for the specified data address or instruction. 77

Instruction Insert
Instruction Delete

Allows a new instruction to be inserted before the displayed instruction, or deletes the
displayed instruction (respectively).

79

Program Check Checks the completed program for syntax errors (up to three levels). 74

Error Message Read Displays error messages in sequence, starting with the most severe messages. 69, 234

Bit/Word Monitor Displays the specified address whose operand is to be monitored. In RUN or MONTR
mode it will show the status of the operand for any bit or word in any data area.

236

3-word Monitor Simultaneously monitors three consecutive words. 244

Forced Set/Reset Set: Used to turn ON bits or timers, or to increment counters currently displayed on
the left of the screen.
Reset: Used to turn OFF bits, or to reset timers or counters.

239

Clear Forced Set/Reset Simultaneously clears all forced bits within the currently displayed word. 241

Hex/BCD Data Change Used to change the value of the leftmost BCD or hexadecimal word displayed during a
Bit/Word Monitor operation.

242

Binary Data Change Changes the value of 16-bit words bit-by-bit. Bits can be changed temporarily or per-
manently to the desired status.

247

SV Change
SV Reset

Alters the SV of a timer or counter either by incrementing or decrementing the value,
or by overwriting the original value with a new one.

249

3-word Change Used to change the value of a word displayed during a 3-word Monitor operation. 245

Scan Time Display Measures the duration of the current cycle. Cycle times will vary according to the ex-
ecution conditions which exist in each cycle.

76

Hex/ASCII Display
Change

Converts 4-digit hexadecimal data in the DM area to ASCII and vice-versa. 243

Binary Monitor Displays the monitored area in binary format. 246

PC to PROM Writer Outputs Program Memory to the RS-232C interface for writing to a commercial PROM
writer.

252

PROM Writer to PC Reads Program Memory data from a commercial PROM writer into the PC via the
RS-232C interface.

253

��	�������� �	��	
�
������	�� Appendix C

��4

System Operations
The next set of tables lists the Programming Console operations according to their function. A brief descrip-
tion of each operation is given, along with the allowable modes in which it can be implemented, and the key-
stroke sequence used to enter it.

Operation/Description Modes* Key sequence

Password Input
Controls access to the PC’s program-
ming functions. To gain access to the
system once “PASSWORD” has
been displayed, press CLR, MONTR,
and then CLR.

R M P
CLR MONTR CLR

Buzzer ON/OFF
The buzzer can be switched to oper-
ate whenever Programming Console
keys are pressed (as well as for the
normal error indication). BZ is dis-
played in the upper right corner when
the buzzer is operative. The buzzer
can be enabled by pressing SHIFT
and then 1 immediately after entering
the password, or after changing the
mode.

R M P
SHIFT

B
1

Data Clear
Unless otherwise specified, this oper-
ation will clear all erasable memory in
Program Memory and IR, HR, AR,
DM, and TC areas. To clear EPROM
memory the write enable switch must
be ON (i.e., enabled). The branch
lines shown are used only when per-
forming a partial memory clear, with
each of the memory areas entered
being retained. Specifying an ad-
dress will result in the Program
Memory after and including that ad-
dress being deleted. All memory up to
that address will be retained.

P
CLR

PLAY

SET
NOT

REC

RESET
MONTR

HR

CNT

DM

[Address] Partial
Clear

Retained if
pressed

All Clear

Program Header Display
Displays the name of the program,
along with the version number and
the time it was last revised (given in
year, month, day, hour, and minute).

R P M

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Appendix C��	�������� �	��	
�
������	��

���

Programming and Debugging Operations
Operation/Description Modes* Key sequence

Address Designation
Displays the specified address. Can
be used to start programming from a
non-zero address or to access an ad-
dress for editing. Leading zeros need
not be entered. The contents of the
address will not be displayed until the
down key is pressed. The up and
down keys can then be used to scroll
through the Program Memory.

R P M

CLR [Address]

Program Input
Used to enter or edit program instruc-
tions. This operation over-writes the
contents of the memory at the dis-
played address. Once at the desired
address, enter the new instruction
word and then press WRITE (preced-
ed by NOT for differentiated instruc-
tions). Input the required operands,
and press WRITE after each.

P
Address
displayed

[Instruction

word]

[Operand]

Program Read
Allows the user to scroll through the
program address-by-address. If the
Program Memory is read in RUN or
MONITOR mode, the ON/OFF status
of each displayed bit is also shown.

R P M
Address
currently
displayed

Program Search
Allows the program to be searched
for occurrences of any designated in-
struction or data area address. To
designate a bit address, press SHIFT,
CONT/#, and then input the address.
Then press SRCH. Pressing SRCH
again will find the next occurrence.
For multi-word instructions, the up
and down keys can be used to scroll
through the words before continuing
the search. In RUN or MONITOR
mode, the ON/OFF status of each
monitored bit will also be displayed.

R P M
CLR SRCH SRCH

CLR SHIFT
CONT

#

SRCH SRCH

LR

HR

HRSHIFT

TIM

CNT

[Instruction]

[Address]

(AR)

Scroll through multi-
word instructions

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

��	�������� �	��	
�
������	�� Appendix C

���

Operation/Description Modes* Key sequence

Instruction Insert and
Instruction Delete
The displayed instruction can be de-
leted, or another instruction can be in-
serted before it. Care should be taken
to avoid inadvertent deletions as
there is no way of recovering the in-
structions other than to re-enter them.
When an instruction is deleted all
subsequent instruction addresses
are automatically adjusted so that
there are no empty addresses, or in-
structions without addresses.

P
INSAt the desired position

in program:

DEL
Instruction
currently
displayed

[Enter new
instruction]

Insert

Delete

Program Check
Once a program has been entered, it
should be checked for errors. This
program check can be used to search
for three levels of syntax errors. De-
tails of the errors covered by each lev-
el are given in Section 4-6-3 Check-
ing the Program. The address where
the error was generated will also be
displayed.

P
CLR SRCH

A

0

B
1

C
2

SRCH SRCH

CLR

Press SRCH to find
next error.

Cancel

(0, 1, 2: check levels)

Error Message Read
Displays error messages in se-
quence with most severe messages
displayed first. Press monitor to ac-
cess remaining messages. In PRO-
GRAM mode, pressing MONTR
clears the displayed message from
memory and the next message is dis-
played.

R P M
CLR FUN MONTR MONTR

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Appendix C��	�������� �	��	
�
������	��

���

Monitoring and Data Changing Operations
Operation/Description Modes* Key sequence

Bit/Word Monitor
Up to six memory addresses, con-
taining either words or bits, or a com-
bination of the two, can be monitored
at once. Only three can be displayed
at any one time. If operated in RUN or
MONITOR mode, the status of moni-
tored bits will also be displayed.
The operation can be started from a
cleared display by entering the ad-
dress of the first word or bit to be mon-
itored and pressing MONTR, or from
any address in the program by dis-
playing the address of the bit or word
to be monitored and pressing
MONTR.
When a timer or counter is monitored,
its PV will be displayed and a box is
displayed in the bottom left hand cor-
ner if the Completion Flag is ON.

R P M

CLR SHIFT
CONT

#

LR

HR

SHIFT HR

LD

OUT

TIM

CNT

DM

MONTR

CLR

[Address]

Cancel

Clears the left-
most address
from the screen.

3-word Monitor
Monitors three consecutive words si-
multaneously. Specify the lowest val-
ued address of the three words, press
MONTR, and then press EXT to dis-
play the data contents of the specified
word and the two words that follow.
Pressing CLR will change the three-
word monitor operation into a single-
word display.

R P M

EXT
Bit/Word monitor in progress.
Currently monitored words ap-
pear on the left of the screen.

3-word Change
This operation changes the value of a
word displayed during a 3-word Moni-
tor operation. The blinking cursor in-
dicates the word that will be affected
by the operation. The cursor can be
moved by using the up and down
keys. When the cursor is at the de-
sired location, press CHG. After en-
tering the new data, pressing WRITE
causes the original data to be over-
written.

P M

WRITECHG
3-word Monitor
in progress [Data]

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

��	�������� �	��	
�
������	�� Appendix C

��#

Operation/Description Modes* Key sequence

Forced Set/Reset
If a bit, timer, or counter address is
leftmost on the screen during a Bit/
Word Monitor operation, pressing
PLAY/SET will turn ON the bit, start
the timer, or increment the counter.
Pressing REC/RESET will turn OFF
the bit, or reset the timer or counter.
These force-sets and force-resets
are effective while the key is held
down.
Permanent sets and resets can be
implemented. By pressing SHIFT
first, the force operations will be effec-
tive until NOT is pressed, or until a
Clear Forced Set/Reset operation is
performed. Timers will not operate in
PROGRAM mode. SR bits are not af-
fected by this operation.

P M PLAY

SET

REC

RESET

Bit/Word monitor in progress. Bit or
Timer/Counter currently monitored
appears on left of the screen.

SHIFT

REC

RESET

PLAY

SET

NOT

SHIFT

Clear Forced Set/Reset
Simultaneously clears all forced set
and forced reset bits within the word
currently displayed.

P M
CLR

REC

RESET

PLAY

SET
NOT

Hex/BCD Data Change
Used to edit the leftmost BCD or hex-
adecimal value displayed during a
Bit/Word Monitor operation. If a timer
or counter is leftmost on the display,
the PV will be the value displayed and
affected by this operation. It can only
be changed in MONITOR mode and
only while the timer or counter is oper-
ating. SR words cannot be changed
using this operation.

P M
CHG WRITE[New data]

Bit/Word monitor in progress.
Currently monitored word ap-
pears on the left of the screen.

Binary Data Change
This operation is used to change the
value of IR, HR, AR, LR, or DM words
bit-by-bit. The cursor can be moved
left by using the up key, and right by
using the down key. The position of
the cursor is the bit that will be over-
written.
There are two types of changes, tem-
porary and permanent. Temporary
changes result if 1 or 0 is entered.
Permanent changes are made by
pressing SHIFT and SET, or SHIFT
and RESET. The former will result in
an S being displayed in that bit posi-
tion. Similarly, SHIFT and RESET will
produce an R in the display.
During operation of the PC, the bits
having 1 or 0 values will change ac-
cording to the program conditions.
Bits with S or R, however, will always
be treated as a 1 or 0, respectively.
NOT cancels S and R settings and
the bits will become 1 or 0, respec-
tively.

P M

CHG
B

1

A

0

WRITE
Binary monitor
in progress. Word
currently displayed.

SHIFT

REC

RESET

PLAY

SET

NOT

SHIFT

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Appendix C��	�������� �	��	
�
������	��

��'

Operation/Description Modes* Key sequence

SV Change,
SV Reset
There are two ways of modifying the
SVs for timers and counters. One
method is to enter a new value.
The second is to increment or decre-
ment the existing SV. In MONITOR
mode the SV can be changed while
the program is being executed. Incre-
menting and decrementing can only
be carried out if the SV has been en-
tered as a constant.

P M
M CHG

Timer/Counter
currently displayed WRITE[New SV]

WRITEEXT

Scan (Cycle) Time Display
This operation should be performed
after all syntax errors have been cor-
rected. The cycle time can only be
checked in RUN or MONITOR mode
and while the program is being ex-
ecuted. The cycle time displayed af-
ter pressing CLR and MONTR is that
for the current cycle. Pressing
MONTR again will display a new
cycle time. Any difference between
successive cycle times is due to the
different execution conditions that ex-
ist during each cycle.

R M
CLR MONTR MONTR

Hex/ASCII Display Change
Converts 4-digit hexadecimal DM
data to ASCII and vice-versa.

R P M

TR
Word currently
displayed

Binary Monitor
The contents of a monitored word can
be specified to be displayed in binary
by pressing SHIFT and MONTR after
entering the word address. Words
can be scrolled by pressing the up
and down keys to increment and
decrement the displayed address. To
terminate the binary display, press
CLR.

R P M

[Word address]

Binary monitor cancel

All monitor cancel

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

��	�������� �	��	
�
������	�� Appendix C

��(

PROM Writer Operations (Non-OMRON Products Only)
Operation/Description Modes* Key sequence

PC to PROM Writer
Copies Program Memory to the
RS-232C interface for writing to a
commercial PROM writer.

P
Start PROM writer
reception

PROM Writer to PC
Reads Program Memory data from a
commercial PROM writer into the PC
via the RS-232C interface. This oper-
ation overwrites the PC’s existing
program memory.

P
Start PROM writer
transmission

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

���

Appendix D
Error and Arithmetic Flag Operation

The following table shows the instructions that affect the ER, CY, GT, LT and EQ flags. In general, ER indi-
cates that operand data is not within requirements. CY indicates arithmetic or data shift results. GT indicates
that a compared value is larger than some standard, LT that it is smaller, and EQ, that it is the same. EQ also
indicates a result of zero for arithmetic operations. Refer to Section 5 Instruction Set for details.

Vertical arrows in the table indicate the flags that are turned ON and OFF according to the result of the in-
struction.

Although ladder diagram instructions,TIM, and CNT are executed when ER is ON, other instructions with a
vertical arrow under the ER column are not executed if ER is ON. All of the other flags in the following table
will also not operate when ER is ON.

Instructions not shown do not affect any of the flags in the table. Although only the non-differentiated form of
each instruction is shown, differentiated instructions affect flags in exactly the same way.

Instructions 25503 (ER) 25504 (CY) 25505 (GR) 25506 (EQ) 25507 (LE)

TIM Unaffected Unaffected Unaffected Unaffected

CNT

END(01) OFF OFF OFF OFF OFF

CNTR(12) Unaffected Unaffected Unaffected Unaffected

TIMH(15)

WSFT(16)

CMP(20) Unaffected

MOV(21) Unaffected Unaffected Unaffected

MVN(22)

BIN(23)

BCD(24)

ASL(25) Unaffected Unaffected

ASR(26)

ROL(27)

ROR(28)

COM(29) Unaffected Unaffected

ADD(30) Unaffected Unaffected

SUB(31)

MUL(32) Unaffected Unaffected Unaffected

DIV(33)

ANDW(34)

ORW(35)

XORW(36)

XNRW(37)

INC(38)

DEC(39)

STC(40) Unaffected ON Unaffected Unaffected Unaffected

CLC(41) Unaffected OFF Unaffected Unaffected Unaffected

MSG(46) Unaffected Unaffected Unaffected Unaffected

LMSG(47)

ADB(50) Unaffected Unaffected

SBB(51)

MLB(52) Unaffected Unaffected Unaffected

DVB(53)

)��	� ��% ���������� +
��
������	� Appendix D

��,

Instructions 25507 (LE)25506 (EQ)25505 (GR)25504 (CY)25503 (ER)

RDM(60) Unaffected Unaffected Unaffected Unaffected

HDM(61)

KEY(62)

POUT(63)

PIN(64)

HTS(65) Unaffected Unaffected Unaffected

STH(66)

BCNT(67)

BCMP(68)

HEX(69) Unaffected Unaffected Unaffected Unaffected

XFER(70) Unaffected Unaffected Unaffected Unaffected

BSET(71)

XCHG(73) Unaffected Unaffected Unaffected Unaffected

SLD(74)

SRD(75)

MLPX(76)

DMPX(77)

MOVB(82) Unaffected Unaffected Unaffected Unaffected

MOVD(83)

SFTR(84) Unaffected Unaffected Unaffected

ASC(86) Unaffected Unaffected Unaffected Unaffected

SBS(91) Unaffected Unaffected Unaffected Unaffected

��"

Appendix E
Memory Areas

This appendix contains tables from Section 3 Memory Areas. They have been duplicated here for conve-
nience. Refer to Section 3 for details. The Parameter Area of System DM is outlined in Appendix K Parameter
Area Coding Charts.

Memory Areas
Area Acronym Range

Internal Relay* IR Words: 040 to 246 Bits: 04000 to 24615

Special Relay SR Words: 247 to 255 Bits: 24700 to 25507

Auxiliary Relay AR Words: AR 00 to AR 27 Bits: AR 0000 to AR 2715

Data Memory DM Read/Write: DM 0000 to DM 0999
Read only: DM 1000 to DM 1999

Holding Relay HR Words: HR 00 to HR 99 Bits: HR 0000 to HR 9915

Timer/Counter TC TC 000 to TC 511 (TC numbers used to access other information)

Link Relay LR Words: LR 00 to LR 63 Bits: LR 0000 to 6315

Temporary Relay TR TR 00 to TR 07 (bits only)

Program Memory UM UM: Depends on Memory Unit used.

* Including I/O words/bits (see next table).

Word Allocations in IR Area
Connected Unit I/O Designation C20H or C28H C40H

CPU Input words IR 000 IR 000 to IR 001

Output words IR 002 IR 002 to IR 003

1st Expansion I/O Unit Input words IR 010 IR 010 to IR 011

Output words IR 012 IR 012 to IR 013

2nd Expansion I/O Unit Input words IR 020 IR 020 to IR 021

Output words IR 022 IR 022 to IR 023

3rd Expansion I/O Unit Input words IR 030 IR 030 to IR 031

Output words IR 032 IR 032 to IR 033

CPUs
Model Input bits Outputs bits Work bits

C20H IR 00000 to IR 00011 IR 00200 to IR 00207 IR 00208 to IR 00215

C28H IR 00000 to IR 00015 IR 00200 to IR 00211 IR 00212 to IR 00215

C40H IR 00000 to IR 00015
IR 00100 to IR 00107

IR 00200 to IR 00211
IR 00300 to IR 00303

IR 00212 to IR 00215
IR 00304 to IR 00315

C60H IR 00000 to IR 00015
IR 00100 to IR 00115

IR 00200 to IR 00211
IR 00300 to IR 00315

IR 00312 to IR 00315

Expansion I/O Units
Model Input bits Outputs bits Work bits

C20H Bits 00 to 11 of IR n Bits 00 to 07 of IR n+2 Bits 08 to 15 of IR n+2

C28H Bits 00 to 15 of IR n Bits 00 to 11 of IR n+2 Bits 12 to 15 of IR n+2

C40H Bits 00 to 15 of IR n
Bits 00 to 07 of IR n+1

Bits 00 to 11 of IR n+2
Bits 00 to 03 of IR n+3

Bits 12 to 15 of IR n+2
Bits 04 to 15 of IR n+3

C60H Bits 00 to 15 of IR n
Bits 00 to 15 of IR n+1

Bits 00 to 11 of IR n+2
Bits 00 to 15 of IR n+3

Bits 12 to 15 of IR n+3

���	�� ����� Appendix E

��4

SR Area
Word(s) Bit(s) Function

247 to 250 00 to 07 Reserved

08 to 15 Reserved

251 00 to 15 Not used

252 00 to 05 Not used

06 Reserved

07 Not used

08 RS-232C Communications Error Flag and CPU-mounting Host Link Unit
Communications Error Flag

09 RS-232C Interface Restart Bit and CPU-mounting Host Link Unit Restart Bit

10 Calendar/clock Area Refresh Bit

11 Forced Status Hold Bit

12 I/O Status Hold Bit

13 Reserved

14 to 15 Not used

253 00 to 07 FAL number output area.

08 Battery Alarm Flag

09 Cycle Time Error Flag

10 Not used

11 Not used

12 Not used

13 Always ON Flag

14 Always OFF Flag

15 First Cycle

254 00 1-minute clock pulse bit

01 0.02-second clock pulse bit

02 to 06 Reserved for future use

07 Step Flag

08 to 14 Reserved for future use

15 Reserved

255 00 0.1-second clock pulse bit

01 0.2-second clock pulse bit

02 1.0-second clock pulse bit

03 Instruction Execution Error (ER) Flag

04 Carry (CY) Flag

05 Greater Than (GR) Flag

06 Equals (EQ) Flag

07 Less Than (LE) Flag

Appendix E���	�� �����

���

AR Area
Word(s) Bit(s) Function

02 00 to 10 Reversible Drum Counter (RDM(60)) Reset Bits

11 High-speed Counter Reset Bit

12 High-speed Counter Reset Flag

03 00 to 10 Reversible Drum Counter (RDM(60)) Direction Bits

11 High-speed Counter Bank Bit

04 00 to 07 RS-232C Communications Error Code

13 RS-232C Reception Impossible Flag

14 RS-232C Reception Completed Flag

15 RS-232C Transmission Possible Flag

05 00 to 07 RS-232C Reception Counter

08 to 15 RS-232C Transmission Counter

06 00 to 15 RS-232C Bytes Received Area

07 08 TERMINAL Mode Input Cancel Bit

13 Error History Overwrite Bit

14 Error History Reset Bit

15 Error History Enable Bit

08 00 to 15 RS-232C Bytes Input Area

12 00 to 15 System Parameter Warning Flags

13 00 to 13 System Parameter Warning Flags

14 System Parameter Backup Flag

15 System Parameter/Backup Area Checksum Flag

14 00 to 03 System Command Response Code

04 to 06 Not used

07 System Command Completion Flag

08 to 11 System Command Command Code

12 to 14 Not used

15 System Command Execution Bit

15 00 to 07 Startup Operating Mode

17 00 to 15 Current Time Area

18 to 21 00 to 15 Calendar/clock Area (AR 2113: Seconds Round-off Bit; AR 2114: Stop Bit; AR 2115: Set Bit)

22 00 to 15 TERMINAL Mode Key Bits

23 00 to 15 Power-off Counter

24 05 SCAN(18) Scan Time Flag

15 Programming Console or Peripheral Interface Unit Mounted Flag

25 00 to 15 FALS-generating Address

26 00 to 15 Maximum Cycle Time Area

27 00 to 15 Current Cycle Time Area

���	�� ����� Appendix E

���

DM Area
Addresses User program

read/write
Usage

DM 0000 to DM 0899 Read/write General User Area

DM 0900 to DM 0929 Read/write Parameter Area

DM 0930 to DM 0968 --- Not used.

DM 0969 to DM 0999 Read/write Error History Area

DM 1000 to DM 1899 Read only General User Area

DM 1900 to DM 1929 Read only Parameter Backup Area

DM 1930 to DM 1989 --- Not used.

DM 1990 to DM 1999 Read only User Program Header

���

Appendix F
Word Assignment Recording Sheets

This appendix contains sheets that can be copied by the programmer to record I/O bit allocations and terminal
assignments, as well as details of work bits, data storage areas, timers, and counters.

��#

Programmer: Program: Date: Page:
Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

I/O Bits

��'

Programmer: Program: Date: Page:
Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Work Bits

��(

Programmer: Program: Date: Page:
Word Contents Notes Word Contents Notes

Data Storage

���

Programmer: Program: Date: Page:
TC address T or C Set value Notes TC address T or C Set value Notes

Timers and Counters

��"

Appendix G
Program Coding Sheet

The following page can be copied for use in coding ladder diagram programs. It is designed for flexibility, al-
lowing the user to input all required addresses and instructions.

When coding programs, be sure to specify all function codes for instructions and data areas (or # for constant)
for operands. These will be necessary when inputting programs though a Programming Console or other Pe-
ripheral Device.

�#4

Programmer: Program: Date: Page:
Address Instruction Operand(s) Address Instruction Operand(s) Address Instruction Operand(s)

Program Coding Sheet

�#�

Appendix H
Data Conversion Table

Decimal BCD Hex Binary

00 00000000 00 00000000

01 00000001 01 00000001

02 00000010 02 00000010

03 00000011 03 00000011

04 00000100 04 00000100

05 00000101 05 00000101

06 00000110 06 00000110

07 00000111 07 00000111

08 00001000 08 00001000

09 00001001 09 00001001

10 00010000 0A 00001010

11 00010001 0B 00001011

12 00010010 0C 00001100

13 00010011 0D 00001101

14 00010100 0E 00001110

15 00010101 0F 00001111

16 00010110 10 00010000

17 00010111 11 00010001

18 00011000 12 00010010

19 00011001 13 00010011

20 00100000 14 00010100

21 00100001 15 00010101

22 00100010 16 00010110

23 00100011 17 00010111

24 00100100 18 00011000

25 00100101 19 00011001

26 00100110 1A 00011010

27 00100111 1B 00011011

28 00101000 1C 00011100

29 00101001 1D 00011101

30 00110000 1E 00011110

31 00110001 1F 00011111

32 00110010 20 00100000

�#�

Appendix I
Extended ASCII

Programming Console and Data Access Console Displays
Bits 0 to 3 Bits 4 to 7

BIN 0000 0001 0010 0011 0100 0101 0110 0111 1010 1011 1100 1101 1110 1111

HEX 0 1 2 3 4 5 6 7 A B C D E F

0000 0 NUL DLE Space % D . E � � � � � �

0001 1 SOH DC1 F # � G � � � � � 	
 �

0010 2 STX DC2 H & 3 � � � �
 � � � �

0011 3 ETX DC3 I " , (� � � � � � � �

0100 4 EOT DC4 J + ' 7 � � � � � � � �

0101 5 ENQ NAK K 4 / 	 � � � ! " #

0110 6 ACK SYN L 5 2 > �
 $ % & ' ()

0111 7 BEL ETB M 6 < A � � * + , - . /

1000 8 BS CAN) 8 0 N � : 0 1 2 3 4 5

1001 9 HT EM * 9 $ O � � 6 7 8 9 : ;

1010 A LF SUB = P @ B � Q < = > ? @ A

1011 B VT ESC R S ; T ! U B C D E F G

1100 C FF FS � V 1 W � X H I J K L M

1101 D CR GS � Y � Z � [N O P Q R S

1110 E S0 RS � \
] � ^ T U V W X

1111 F S1 US - ? � C � _ Y Z [\] ^

�#'

Appendix J
Programming Console Key Codes

The following codes can be used in KEY(62) to execute Programming Console operations from the user pro-
gram. Refer to Section 5 Instruction Set for programming details and to Section 7 Program Input, Debugging,
and Execution for Programming Console details.

The keys shown below are activated with the hexadecimal code given with it. The Programming Console dis-
play can be reset to the password display by inputting 40hex.

3D 3C 3B 38

None

39

None

3A

35 34 33 30 31 32

2D 2C 2B 28 29 2A

25 24 23 20 21 22

1D 1C 1B 18 19 1A

15 14 13 10 11 12

0D 0C

None

0B 08 09 0A

�#�

Appendix K
Parameter Area Coding Charts

This appendix is provided for you to use in determining and inputting settings into the parameter area of Sys-
tem DM. The default settings are given for convenience. Only those settings which differ from the defaults
need to be noted. DM addresses not in parentheses are those in the parameter area; those within paren-
theses are those of the corresponding words in the parameter backup area.

Word and parameter Default Setting

Bit Content/Meaning

DM 0900 (DM 1900): PC Mode on Startup Key switch: 0000

00 to 07 00: PROGRAM 01: MONITOR
02: RUN

00

08 to 15 00: As set on Programming Console key switch
01: Mode when PC was last turned off (in AR 15)
02: Mode set in bits 00 to 07, above

00

DM 0901 (DM 1901): Cycle Time Limit 100 ms: 1001

00 to 07 Cycle time limit in units of ten milliseconds. Setting is be-
tween 00 and 99 in BCD resulting in cycle time limits be-
tween 000 and 990 ms, respectively.

10

08 to 15 00: Bits 00 to 07 disabled (i.e., cycle time limit is 100 ms)
01: Bits 00 to 07 enabled

01

DM 0902 (DM 1902): Peripheral Device Service Time 5%: 0000

00 to 07 Percent of cycle time allocated to Device servicing between
00 and 99 in BCD.

00

08 to 15 00: Bits 00 to 07 disabled (i.e., servicing set to 5%)
01: Bits 00 to 07 enabled

00

DM 0903 (DM 1903): RS-232C Interface Service Time 5%: 0000

00 to 07 Percent of cycle time allocated to RS-232C interface servic-
ing between 00 and 99 in BCD.

00

08 to 15 00: Bits 00 to 07 disabled (i.e., servicing set to 5%)
01: Bits 00 to 07 enabled

00

DM 0904 (DM 1904): Programming Console Message Language Bits English:

08 to 15 00: English 01: Japanese 02: German
03: French 04: Italian 05: Spanish

0000

DM 0905 (DM 1905): General High-speed Counter Bits No counter: 0000

00 IR 00200 Enable Bit 0

01 IR 00201 Enable Bit 0

02 IR 00202 Enable Bit 0

03 IR 00203 Enable Bit 0

04 IR 00204 Enable Bit 0

05 IR 00205 Enable Bit 0

06 IR 00206 Enable Bit 0

07 IR 00207 Enable Bit 0

08 to 10 Final step for bank 0 (0 to 7) 0

11 to 13 Final step for bank 1 (0 to 7) 0

14 Hard Reset Enable Bit (Turn ON to enable hard reset.) 0

15 High-speed Counter Enable Bit (Turn ON to enable counter.) 0

��������� ���� �	%��� ������ Appendix K

�#,

Word and parameter SettingDefault

Bit Content/Meaning

DM 0906 (DM 1906): High-speed Counter Interrupt Output Table 0000

00 Step 0 output status for IR 00200 0

01 Step 0 output status for IR 00201 0

02 Step 0 output status for IR 00202 0

03 Step 0 output status for IR 00203 0

04 Step 0 output status for IR 00204 0

05 Step 0 output status for IR 00205 0

06 Step 0 output status for IR 00206 0

07 Step 0 output status for IR 00207 0

08 Step 1 output status for IR 00200 0

09 Step 1 output status for IR 00201 0

10 Step 1 output status for IR 00202 0

11 Step 1 output status for IR 00203 0

12 Step 1 output status for IR 00204 0

13 Step 1 output status for IR 00205 0

14 Step 1 output status for IR 00206 0

15 Step 1 output status for IR 00207 0

DM 0907 (DM 1907):
High-speed Counter Interrupt Output Table (continued)
This word continues the table started in DM 0906.

0000

00 Step 2 output status for IR 00200 0

01 Step 2 output status for IR 00201 0

02 Step 2 output status for IR 00202 0

03 Step 2 output status for IR 00203 0

04 Step 2 output status for IR 00204 0

05 Step 2 output status for IR 00205 0

06 Step 2 output status for IR 00206 0

07 Step 2 output status for IR 00207 0

08 Step 3 output status for IR 00200 0

09 Step 3 output status for IR 00201 0

10 Step 3 output status for IR 00202 0

11 Step 3 output status for IR 00203 0

12 Step 3 output status for IR 00204 0

13 Step 3 output status for IR 00205 0

14 Step 3 output status for IR 00206 0

15 Step 3 output status for IR 00207 0

Appendix K��������� ���� �	%��� ������

�#"

Word and parameter SettingDefault

Bit Content/Meaning

DM 0908 (DM 1908):
High-speed Counter Interrupt Output Table (continued)
This word continues the table started in DM 0906.

0000

00 Step 4 output status for IR 00200 0

01 Step 4 output status for IR 00201 0

02 Step 4 output status for IR 00202 0

03 Step 4 output status for IR 00203 0

04 Step 4 output status for IR 00204 0

05 Step 4 output status for IR 00205 0

06 Step 4 output status for IR 00206 0

07 Step 4 output status for IR 00207 0

08 Step 5 output status for IR 00200 0

09 Step 5 output status for IR 00201 0

10 Step 5 output status for IR 00202 0

11 Step 5 output status for IR 00203 0

12 Step 5 output status for IR 00204 0

13 Step 5 output status for IR 00205 0

14 Step 5 output status for IR 00206 0

15 Step 5 output status for IR 00207 0

DM 0909 (DM 1909):
High-speed Counter Interrupt Output Table (continued)
This word continues the table started in DM 0906.

0000

00 Step 6 output status for IR 00200 0

01 Step 6 output status for IR 00201 0

02 Step 6 output status for IR 00202 0

03 Step 6 output status for IR 00203 0

04 Step 6 output status for IR 00204 0

05 Step 6 output status for IR 00205 0

06 Step 6 output status for IR 00206 0

07 Step 6 output status for IR 00207 0

08 Step 7 output status for IR 00200 0

09 Step 7 output status for IR 00201 0

10 Step 7 output status for IR 00202 0

11 Step 7 output status for IR 00203 0

12 Step 7 output status for IR 00204 0

13 Step 7 output status for IR 00205 0

14 Step 7 output status for IR 00206 0

15 Step 7 output status for IR 00207 0

��������� ���� �	%��� ������ Appendix K

�'4

Word and parameter SettingDefault

Bit Content/Meaning

High-speed Counter Step Table
These words contain the width of each step of the counter. The total width
of the counter is the sum of all the widths set below.

--- ---

Step 0: DM 0910 0000 (10000) when
i bl dStep 1: DM 0911

()
counter is enabled.

Step 2: DM 0912

Step 3: DM 0913

Step 4: DM 0914

Step 5: DM 0915

Step 6: DM 0916

Step 7: DM 0917

DM 0918 and DM 0919 (DM 1918 and DM 1919) Not used. 0000 0000

DM 0920 (DM 1920) 0000

00 to 07 Standard/Custom Communications Format Selectio n
00: Standard

(1 start bit, 7-bit data length, even parity, 2 stop bits,
9,600 baud)

01: Custom settings
(i.e., according to contents of DM 0921)

Standard: 00

08 to 15 RS-232C Mode
00: Host link 01: Memory upload/download
02: ASCII output mode

Host link: 00

DM 0921 (DM 1921) 0000

00 to 07 Baud Rate (if DM 0920 bits 00 to 07 are 01)
00: 300 bps 01: 600 bps 02: 1,200 bps
03: 2,400 bps 04: 4,800 bps* 05: 9,600 bps*

300 bps: 00

08 to 15 Data Format (if DM 0920 bits 00 to 07 are 01)
00: 1 start bit, 7-bit data, 2 stop bits, even parity
01: 1 start bit, 7-bit data, 2 stop bits, odd parity
02: 1 start bit, 8-bit data, 1 stop bits, no parity
03: 1 start bit, 8-bit data, 2 stop bits, no parity
04: 1 start bit, 8-bit data, 1 stop bits, even parity
05: 1 start bit, 8-bit data, 1 stop bits, odd parity

1 start bit, 7-bit
data, 2 stop bits,
even parity: 00

DM 0922 (DM 1922) 0000

00 to 07 Transmission Delay
In tenths of milliseconds between 00 and 99 (BCD, corre-
spond to 000 and 990 ms delays, respectively)

0 ms: 00

08 to 15 RTS/CTS Control
00: Without RTS/CTS
01: With RTS/CTS

Without RTS/CTS:
00

DM 0923 (DM 1923) (00 to 07 not used.) 0000 00

08 to 15 Unit number for host link mode between 00 and 31 in BCD #0: 00

DM 0924 (DM 1924) (00 to 07 not used.) 0000 00

08 to 15 Transmission Format for Memory Upload/Download
00: Intel HEX 01: Motorola S

Intel HEX: 00

DM 0925 (DM 1925) 0000

00 to 07 Starting Code
This byte contains the starting code used in POUT(63) and
PIN(64) transmissions when bits 08 to 15 contain 01.

No starting code

08 to 15 Starting Code/No Starting Code Selectio n
00: No starting code
01: Starting code set in bits 00 to 07

Appendix K��������� ���� �	%��� ������

�'�

Word and parameter SettingDefault

Bit Content/Meaning

DM 0926 (DM 1926) 0000

00 to 07 End Code
This byte contains the end code used in POUT(63) and
PIN(64) transmissions when bits 08 to 15 contain 01.

No end code

08 to 15 End Code/No End Code Selectio n
00: No end code
01: End code set in bits 00 to 07

DM 0927 to DM 0929 (DM 1927 to DM 1929) 0000 0000

Not used. --- ---

*Higher baud rates may produce errors in RS-232C communications if both RS-232C interface and Peripheral Interface
Unit are used.

�'�

Glossary

address The location in memory where data is stored. For data areas, an address
consists of a two-letter data area designation and a number that designates
the word and/or bit location. For the UM area, an address designates the in-
struction location (UM area). In the FM area, the address designates the
block location, etc.

allocation The process by which the PC assigns certain bits or words in memory for
various functions. This includes pairing I/O bits to I/O points on Units.

AND A logic operation whereby the result is true if and only if both premises are
true. In ladder-diagram programming the premises are usually ON/OFF
states of bits or the logical combination of such states called execution condi-
tions.

APF Acronym for all-plastic optical fiber cable.

AR area A PC data area allocated to flags, control bits, and work bits.

arithmetic shift A shift operation wherein the carry flag is included in the shift.

ASCII Short for American Standard Code for Information Interchange. ASCII is
used to code characters for output to printers and other external devices.

BCD Short for binary-coded decimal.

BCD calculation An arithmetic calculation that uses numbers expressed in binary-coded deci-
mal.

binary A number system where all numbers are expressed in base 2, i.e., numbers
are written using only 0’s and 1’s. Each group of four binary bits is equivalent
to one hexadecimal digit.

binary calculation An arithmetic calculation that uses numbers expressed in binary.

binary-coded decimal A system used to represent numbers so that each group of four binary bits is
numerically equivalent to one decimal digit.

bit A binary digit; hence a unit of data in binary notation. The smallest unit of
information that can be electronically stored in a PC. The status of a bit is
either ON or OFF. Different bits at particular addresses are allocated to spe-
cial purposes, such as holding the status input from external devices, while
other bits are available for general use in programming.

bit address The location in memory where a bit of data is stored. A bit address must
specify (sometimes by default) the data area and word that is being ad-
dressed, as well as the number of the bit.

bit designator An operand that is used to designate the bit or bits of a word to be used by
an instruction.

bit number A number that indicates the location of a bit within a word. Bit 00 is the right-
most (least-significant) bit; bit 15 is the leftmost (most-significant) bit.

7
	�����

�'#

buffer A temporary storage space for data in a computerized device.

bus bar The line leading down the left and sometimes right side of a ladder diagram.
Instruction execution proceeds down the bus bar, which is the starting point
for all instruction lines.

call A process by which instruction execution shifts from the main program to a
subroutine. The subroutine may be called by an instruction or by an interrupt.

carry flag A flag that is used with arithmetic operations to hold a carry from an addition
or multiplication operation, or to indicate that the result is negative in a sub-
traction operation. The carry flag is also used with certain types of shift oper-
ations.

clock pulse A pulse available at a certain bit in memory for use in timing operations. Vari-
ous clock pulses are available with different pulse widths.

clock pulse bit A bit in memory that supplies a pulse that can be used to time operations.
Various clock pulse bits are available with different pulse widths, and there-
fore different frequencies.

common data Data that is stored in the LR Area of a PC and which is shared by other PCs
in the same the same system. Each PC has a specified section of the LR
Area allocated to it. This allocation is the same in each LR Area of each PC.

condition An message placed in an instruction line to direct the way in which the termi-
nal instructions, on the right side, are to be executed. Each condition is as-
signed to a bit in memory that determines its status. The status of the bit as-
signed to each condition determines, in turn, the execution condition for each
instruction up to a terminal instruction on the right side of the ladder diagram.

CONSOLE mode A Programming Console mode that enables key sequences to be input. See
TERMINAL mode.

constant An operand for which the actual numeric value is specified by the user, and
which is then stored in a particular address in the data memory.

control bit A bit in a memory area that is set either through the program or via a Pro-
gramming Device to achieve a specific purpose, e.g., a Restart bit is turned
ON and OFF to restart a Unit.

Control System All of the hardware and software components used to control other devices.
A Control System includes the PC System, the PC programs, and all I/O de-
vices that are used to control or obtain feedback from the controlled system.

controlled system The devices that are being controlled by a PC System.

control signal A signal sent from the PC to effect the operation of the controlled system.

counter A dedicated group of digits or words in memory used to count the number of
times a specific process has occurred, or a location in memory accessed
through a TC bit and used to count the number of times the status of a bit or
an execution condition has changed from OFF to ON.

CPU An acronym for central processing unit. In a PC System, the CPU executes
the program, processes I/O signals, communicates with external devices,
etc.

7
	�����

�''

CTS An acronym for clear-to-send, a signal used in communications between
electronic devices to indicate that the receiver is ready to accept incoming
data.

cycle The process used to execute a ladder-diagram program. The program is ex-
amined sequentially from start to finish and each instruction is executed in
turn based on execution conditions.

cycle time The time required for a single cycle of the ladder-diagram program.

data area An area in the PC’s memory that is designed to hold a specific type of data,
e.g., the LR area is designed to hold common data in a PC Link System.
Memory areas that hold programs are not considered data areas.

data area boundary The highest address available within a data area. When designating an oper-
and that requires multiple words, it is necessary to ensure that the highest
address in the data area is not exceeded.

data sharing An aspect of PC Link Systems and of Data Links in Net Link Systems in
which common data areas or common data words are created between two
or more PCs.

debug A process by which a draft program is corrected until it operates as intended.
Debugging includes both the removal of syntax errors, as well as the
fine-tuning of timing and coordination of control operations.

decimal A number system where all numbers are expressed to the base 10. In a PC
all data is ultimately stored in binary form, four binary bits are often used to
represent one decimal digit, via a system called binary-coded decimal.

decrement Decreasing a numeric value.

default A value automatically set by the PC when the user omits to set a specific val-
ue. Many devices will assume such default conditions upon the application of
power.

definer A number used as an operand for an instruction but that serves to define the
instruction itself, rather that the data on which the instruction is to operate.
Definers include jump numbers, subroutine numbers, etc.

destination The location where an instruction is to place the data on which it is operating,
as opposed to the location from which data is taken for use in the instruction.
The location from which data is taken is called the source.

differentiated instruction An instruction that is executed only once each time its execution condition
goes from OFF to ON. Nondifferentiated instructions are executed each cycle
as long as the execution condition stays ON.

differentiation instruction An instruction used to ensure that the operand bit is never turned ON for
more than one cycle after the execution condition goes either from OFF to
ON for a Differentiate Up instruction or from ON to OFF for a Differentiate
Down instruction.

digit A unit of storage in memory that consists of four bits.

7
	�����

�'(

digit designator An operand that is used to designate the digit or digits of a word to be used
by an instruction.

distributed control An automation concept in which control of each portion of an automated sys-
tem is located near the devices actually being controlled, i.e., control is de-
centralized and ‘distributed’ over the system. Distributed control is one of the
fundamental concepts of PC Systems.

DM area A data area used to hold only word data. Words in the DM area cannot be
accessed bit by bit.

download The process of transferring a program or data from a higher-level computer
to a lower-level computer or PC.

electrical noise Random variations of one or more electrical characteristics such as voltage,
current, and data, which might interfere with the normal operation of a de-
vice.

error code A numeric code generated to indicate that an error exists, and something
about the nature of the error. Some error codes are generated by the system;
others are defined in the program by the operator.

Error History Area An area in System DM that is used to store records indicating the time and
nature of up to ten errors that have occurred in the system.

exclusive OR A logic operation whereby the result is true if one, and only one, of the prem-
ises is true. In ladder-diagram programming the premises are usually the ON/
OFF states of bits, or the logical combination of such states, called execution
conditions.

exclusive NOR A logic operation whereby the result is true if both of the premises are true or
both of the premises are false. In ladder-diagram programming the premises
are usually the ON/OFF states of bits, or the logical combination of such
states, called execution conditions.

exection condition The ON or OFF status under which an instruction is executed. The execution
condition is determined by the logical combination of conditions on the same
instruction line and up to the instruction currently being executed.

execution time The time required for the CPU to execute either an individual instruction or
an entire program.

extended counter A counter created in a program by using two or more count instructions in
succession. Such a counter is capable of counting higher than any of the
standard counters provided by the individual instructions.

extended timer A timer created in a program by using two or more timers in succession.
Such a timer is capable of timing longer than any of the standard timers pro-
vided by the individual instructions.

Factory Intelligent Terminal A programming device provided with advanced programming and debugging
capabilities to facilitate PC operation. The Factory Intelligent Terminal also
provides various interfaces for external devices, such as floppy disk drives.

fatal error An error that stops PC operation and requires correction before operation
can continue.

7
	�����

�'�

FIT Abbreviation for Factory Intelligent Terminal.

flag A dedicated bit in memory that is set by the system to indicate some type of
operating status. Some flags, such as the carry flag, can also be set by the
operator or via the program.

flicker bit A bit that is programmed to turn ON and OFF at a specific frequency.

floating point decimal A decimal number expressed as a number between 0 and 1 (the mantissa)
multiplied by a power of 10, e.g., 0.538 x 10--5.

Floppy Disk Interface Unit A Unit used to interface a floppy disk drive to a PC so that programs and/or
data can be stored on floppy disks.

force reset The process of forcibly turning OFF a bit via a programming device. Bits are
usually turned OFF as a result of program execution.

force set The process of forcibly turning ON a bit via a programming device. Bits are
usually turned ON as a result of program execution.

function code A two-digit number used to input an instruction into the PC.

GPC Acronym for Graphic Programming Console.

A programming device with advanced programming and debugging capabili-
ties to facilitate PC operation. A Graphic Programming Console is provided
with a large display onto which ladder-diagram programs can be written di-
rectly in ladder-diagram symbols for input into the PC without conversion to
mnemonic form.

hardware error An error originating in the hardware structure (electronic components) of the
PC, as opposed to a software error, which originates in software (i.e., pro-
grams).

hexadecimal A number system where all numbers are expressed to the base 16. In a PC
all data is ultimately stored in binary form, however, displays and inputs on
Programming Devices are often expressed in hexadecimal to simplify opera-
tion. Each group of four binary bits is numerically equivalent to one hexadeci-
mal digit.

Host Link System A system with one or more host computers connected to one or more PCs
via Host Link Units so that the host computer can be used to transfer data to
and from the PC(s). Host Link Systems enable centralized management and
control of PC Systems.

Host Link Unit An interface used to connect a PC to a host computer in a Host Link System.

host computer A computer that is used to transfer data or programs to from a PC in a Host
Link System. The host computer is used for data management and overall
system control. Host computers are generally personal or business comput-
ers.

HR area A data area used to store and manipulate data, and to preserve data when
power to the PC is turned OFF.

Graphic Programming
Console

7
	�����

�',

increment Increasing a numeric value.

indirect address An address whose contents indicates another address. The contents of the
second address will be used as the operand. Indirect addressing is possible
in the DM area only.

initialization error An error that occurs either in hardware or software during the PC System
startup, i.e., during initialization.

initialize Part of the startup process whereby some memory areas are cleared, system
setup is checked, and default values are set.

input The signal coming from an external device into the PC. The term input is of-
ten used abstractly or collectively to refer to incoming signals.

input bit A bit in the IR area that is allocated to hold the status of an input.

input device An external device that sends signals into the PC System.

input point The point at which an input enters the PC System. Input points correspond
physically to terminals or connector pins.

input signal A change in the status of a connection entering the PC. Generally an input
signal is said to exist when, for example, a connection point goes from low to
high voltage or from a nonconductive to a conductive state.

instruction A direction given in the program that tells the PC of an action to be carried
out, and which data is to be used in carrying out the action. Instructions can
be used to simply turn a bit ON or OFF, or they can perform much more com-
plex actions, such as converting and/or transferring large blocks of data.

instruction block A group of instructions that is logically related in a ladder-diagram program.
Although any logically related group of instructions could be called an instruc-
tion block, the term is generally used to refer to blocks of instructions called
logic blocks that require logic block instructions to relate them to other in-
structions or logic blocks.

instruction execution time The time required to execute an instruction. The execution time for any one
instruction can vary with the execution conditions for the instruction and the
operands used within it.

instruction line A group of conditions that lie together on the same horizontal line of a ladder
diagram. Instruction lines can branch apart or join together to form instruction
blocks.

interface An interface is the conceptual boundary between systems or devices and
usually involves changes in the way the communicated data is represented.
Interface devices such as NSBs perform operations like changing the coding,
format, or speed of the data.

interlock A programming method used to treat a number of instructions as a group so
that the entire group can be reset together when individual execution is not
required. An interlocked program section is executed normally for an ON ex-
ecution condition and partially reset for an OFF execution condition.

7
	�����

�'"

interrupt (signal) A signal that stops normal program execution and causes a subroutine to be
run.

Interrupt Input Unit A Rack-mounting Unit used to input external interrupts into a PC System.

inverse condition A condition that produces an ON execution condition when the bit assigned
to it is OFF, and an OFF execution condition when the bit assigned to it is
ON.

I/O capacity The number of inputs and outputs that a PC is able to handle. This number
ranges from around one hundred for smaller PCs to two thousand for the
largest ones.

I/O devices The devices to which terminals on I/O Units, Special I/O Units, or Intelligent
I/O Units are connected. I/O devices may be either part of the Control Sys-
tem, if they function to help control other devices, or they may be part of the
controlled system.

I/O point The place at which an input signal enters the PC System, or at which an out-
put signal leaves the PC System. In physical terms, I/O points correspond to
terminals or connector pins on a Unit; in terms of programming, an I/O points
correspond to I/O bits in the IR area.

I/O response time The time required for an output signal to be sent from the PC in response to
an input signal received from an external device.

I/O word A word in the IR area that is allocated to a Unit in the PC System.

IR area A data area whose principal function is to hold the status of inputs coming
into the system and that of outputs that are to be set out of the system. Bits
and words in the IR that are used this way are called I/O bits and I/O words.
The remaining bits in the IR area are work bits.

jump A type of programming where execution moves directly from one point in a
program to another, without sequentially executing any instructions
inbetween. Jumps are usually conditional on an execution condition.

jump number A definer used with a jump that defines the points from and to which a jump
is to be made.

ladder diagram (program) A form of program arising out of relay-based control systems that uses cir-
cuit-type diagrams to represent the logic flow of programming instructions.
The appearance of the program is similar to a ladder, and thus the name.

ladder diagram symbol A symbol used in a ladder-diagram program.

ladder instruction An instruction that represents the ‘rung’ portion of a ladder-diagram program.
The other instructions in a ladder diagram fall along the right side of the dia-
gram and are called terminal instructions.

Ladder Support Software A software package that provides most of the functions of the Factory Intelli-
gent Terminal on an IBM AT, IBM XT, or compatible computer.

LAN An acronym for local area network.

7
	�����

�(4

leftmost (bit/word) The highest numbered bits of a group of bits, generally of an entire word, or
the highest numbered words of a group of words. These bits/words are often
called most-significant bits/words.

Link Adapter A Unit used to connect communications lines, either to branch the lines or to
convert between different types of cable. There are two types of Link
Adapter: Branching Link Adapters and Converting Link Adapters.

load The processes of copying data either from an external device or from a stor-
age area to an active portion of the system such as a display buffer. Also, an
output device connected to the PC is called a load.

local area network A network consisting of nodes or positions in a loop arrangement. Each node
can be any one of a number of devices, which can transfer data to and from
each other.

logic block A group of instructions that is logically related in a ladder-diagram program
and that requires logic block instructions to relate it to other instructions or
logic blocks.

logic block instruction An instruction used to locally combine the execution condition resulting from
a logic block with a current execution condition. The current execution condi-
tion could be the result of a single condition, or of another logic block. AND
Load and OR Load are the two logic block instructions.

logic instruction Instructions used to logically combine the content of two words and output
the logical results to a specified result word. The logic instructions combine
all the same-numbered bits in the two words and output the result to the bit of
the same number in the specified result word.

loop A group of instructions that can be executed more than once in succession
(i.e., repeated) depending on an execution condition or bit status.

LR area A data area that is used in a PC Link System so that data can be transferred
between two or more PCs. If a PC Link System is not used, the LR area is
available for use as work bits.

LSS Abbreviation for Ladder Support Software.

main program All of a program except for the subroutines.

masking ‘Covering’ an interrupt signal so that the interrupt is not effective until the
mask is removed.

memory area Any of the areas in the PC used to hold data or programs.

mnemonic code A form of a ladder-diagram program that consists of a sequential list of the
instructions without using a ladder diagram. Mnemonic code is required to
input a program into a PC when using a Programming Console.

MONITOR mode A mode of PC operation in which normal program execution is possible, and
which allows modification of data held in memory. Used for monitoring or de-
bugging the PC.

NC input An input that is normally closed, i.e., the input signal is considered to be
present when the circuit connected to the input opens.

7
	�����

�(�

nest Programming one loop within another loop, programming a call to a subrou-
tine within another subroutine, or programming an IF--ELSE programming
section within another IF--ELSE section.

node One of the positions in a LAN. Each node incorporates a device that can
communicate with the devices at all of the other nodes. The device at a node
is identified by the node number. One loop of a Net Link System (OMRON’s
LAN) can consist of up to 126 nodes. Each node is occupied by a Net Link
Unit mounted to a PC or a device providing an interface to a computer or
other peripheral device.

NO input An input that is normally open, i.e., the input signal is considered to be pres-
ent when the circuit connected to the input closes.

noise interference Disturbances in signals caused by electrical noise.

nonfatal error A hardware or software error that produces a warning but does not stop the
PC from operating.

normal condition A condition that produces an ON execution condition when the bit assigned
to it is ON, and an OFF execution condition when the bit assigned to it is
OFF.

NOT A logic operation which inverts the status of the operand. For example, AND
NOT indicates an AND operation with the opposite of the actual status of the
operand bit.

OFF The status of an input or output when a signal is said not to be present. The
OFF state is generally represented by a low voltage or by non-conductivity,
but can be defined as the opposite of either.

OFF delay The delay between the time when a signal is switched OFF (e.g., by an input
device or PC) and the time when the signal reaches a state readable as an
OFF signal (i.e., as no signal) by a receiving party (e.g., output device or
PC).

ON The status of an input or output when a signal is said to be present. The ON
state is generally represented by a high voltage or by conductivity, but can be
defined as the opposite of either.

ON delay The delay between the time when an ON signal is initiated (e.g., by an input
device or PC) and the time when the signal reaches a state readable as an
ON signal by a receiving party (e.g., output device or PC).

one-shot bit A bit that is turned ON or OFF for a specified interval of time which is longer
than one cycle.

on-line removal Removing a Rack-mounted Unit for replacement or maintenance during PC
operation.

operand Bit(s) or word(s) designated as the data to be used for an instruction. An op-
erand can be input as a constant expressing the actual numeric value to be
used or as an address to express the location in memory of the data to be
used.

7
	�����

�(�

operand bit A bit designated as an operand for an instruction.

operand word A word designated as an operand for an instruction.

operating error An error that occurs during actual PC operation as opposed to an initializa-
tion error, which occurs before actual operations can begin.

OR A logic operation whereby the result is true if either of two premises is true, or
if both are true. In ladder-diagram programming the premises are usually ON/
OFF states of bits or the logical combination of such states called execution
conditions.

output The signal sent from the PC to an external device. The term output is often
used abstractly or collectively to refer to outgoing signals.

output bit A bit in the IR area that is allocated to hold the status to be sent to an output
device.

output device An external device that receives signals from the PC System.

output point The point at which an output leaves the PC System. Output points corre-
spond physically to terminals or connector pins.

output signal A signal being sent to an external device. Generally an output signal is said
to exist when, for example, a connection point goes from low to high voltage
or from a nonconductive to a conductive state.

overseeing Part of the processing performed by the CPU that includes general tasks re-
quired to operate the PC.

overwrite Changing the content of a memory location so that the previous content is
lost.

Parameter Area A part of System DM used to designate various PC operating parameters.

Parameter Backup Area A part of System DM used to back up the Parameter Area.

parity Adjustment of the number of ON bits in a word or other unit of data so that
the total is always an even number or always an odd number. Parity is gener-
ally used to check the accuracy of data after being transmitted by confirming
that the number of ON bits is still even or still odd.

PC An acronym for Programmable Controller.

PCB An acronym for printed circuit board.

PC configuration The arrangement and interconnections of the Units that are put together to
form a functional PC.

PC Link System A system in which PCs are connected through PC Link Units to enable them
to share common data areas, i.e., each of the PCs writes to certain words in
the LR area and receives the data of the words written by all other PC Link
Units connected in series with it.

PC Link Unit The Unit used to connect PCs in a PC Link System.

7
	�����

�(�

PC System With building-block PCs, all of the Racks and independent Units connected
directly to them up to, but not including the I/O devices. The boundaries of a
PC System are the PC and the program in its CPU at the upper end; and the
I/O Units, Special I/O Units, Optical I/O Units, Remote Terminals, etc., at the
lower end.

peripheral device Devices connected to a PC System to aid in system operation. Peripheral
devices include printers, programming devices, external storage media, etc.

port A connector on a PC or computer that serves as a connection to an external
device.

present value The current value registered in a device at any instant during its operation.
Present value is abbreviated as PV.

printed circuit board A board onto which electrical circuits are printed for mounting into a comput-
er or electrical device.

Printer Interface Unit A Unit used to interface a printer so that ladder diagrams and other data can
be printed out.

program The list of instructions that tells the PC the sequence of control actions to be
carried out.

Programmable Controller A computerized device that can accept inputs from external devices and gen-
erate outputs to external devices according to a program held in memory.
Programmable Controllers are used to automate control of external devices.

programmed alarm An alarm given as a result of execution of an instruction designed to gener-
ate the alarm in the program, as opposed to one generated by the system.

programmed error An error arising as a result of the execution of an instruction designed to gen-
erate the error in the program, as opposed to one generated by the system.

programmed message A message generated as a result of execution of an instruction designed to
generate the message in the program, as opposed to one generated by the
system.

Programming Console The simplest form or programming device available for a PC. Programming
Consoles are available both as hand-held models and as CPU-mounting
models.

Programming Device A peripheral device used to input a program into a PC or to alter or monitor a
program already held in the PC. There are dedicated programming devices,
such as Programming Consoles, and there are non-dedicated devices, such
as a host computer.

PROGRAM mode A mode of operation that allows inputting and debugging of programs to be
carried out, but that does not permit normal execution of the program.

PROM Writer A peripheral device used to write programs and other data into a ROM for
permanent storage and application.

prompt A message or symbol that appears on a display to request input from the op-
erator.

7
	�����

�(#

PV Acronym for present value.

refresh The process of updating output status sent to external devices so that it
agrees with the status of output bits held in memory and of updating input
bits in memory so that they agree with the status of inputs from external de-
vices.

relay-based control The forerunner of PCs. In relay-based control, groups of relays are intercon-
nected to form control circuits. In a PC, these are replaced by programmable
circuits.

reset The process of turning a bit or signal OFF or of changing the present value of
a timer or counter to its set value or to zero.

return The process by which instruction execution shifts from a subroutine back to
the main program (usually the point from which the subroutine was called).

reversible counter A counter that can be both incremented and decremented depending on the
specified conditions.

reversible shift register A shift register that can shift data in either direction depending on the speci-
fied conditions.

right-hand instruction Another term for terminal instruction.

rightmost (bit/word) The lowest numbered bits of a group of bits, generally of an entire word, or
the lowest numbered words of a group of words. These bits/words are often
called least-significant bits/words.

rotate register A shift register in which the data moved out from one end is placed back into
the shift register at the other end.

RUN mode The operating mode used by the PC for normal control operations.

scan time See cycle time.

self diagnosis A process whereby the system checks its own operation and generates a
warning or error if an abnormality is discovered.

self-maintaining bit A bit that is programmed to maintain either an OFF or ON status until set or
reset by specified conditions.

servicing The process whereby the PC provides data to or receives data from external
devices or remote I/O Units, or otherwise handles data transactions for Link
Systems.

set The process of turning a bit or signal ON.

set value The value from which a decrementing counter starts counting down or to
which an incrementing counter counts up (i.e., the maximum count), or the
time from which or for which a timer starts timing. Set value is abbreviated
SV.

shift register One or more words in which data is shifted a specified number of units to the
right or left in bit, digit, or word units. In a rotate register, data shifted out one
end is shifted back into the other end. In other shift registers, new data (ei-
ther specified data, zero(s) or one(s)) is shifted into one end and the data
shifted out at the other end is lost.

7
	�����

�('

slot A position on a Rack (Backplane) to which a Unit can be mounted.

software error An error that originates in a software program.

software protect A means of protecting data from being changed that uses software as op-
posed to a physical switch or other hardware setting.

source The location from which data is taken for use in an instruction, as opposed to
the location to which the result of an instruction is to be written. The latter is
called the destination.

SR area A data area in a PC used mainly for flags, control bits, and other information
provided about PC operation. The status of only certain SR bits may be con-
trolled by the operator, i.e., most SR bits can only be read.

subroutine A group of instructions placed after the main program and executed only if
called from the main program or activated by an interrupt.

subroutine number A definer used to identify the subroutine that a subroutine call or interrupt
activates.

SV Abbreviation for set value.

switching capacity The maximum voltage/current that a relay can safely switch on and off.

syntax error An error in the way in which a program is written. Syntax errors can include
‘spelling’ mistakes (i.e., a function code that does not exist), mistakes in
specifying operands within acceptable parameters (e.g., specifying unwrit-
able SR bits as a destination), and mistakes in actual application of instruc-
tions (e.g., a call to a subroutine that does not exist).

System Command Control bits in the AR area used to manipulate the Parameter and Parameter
Backup Areas.

system configuration The arrangement in which Units in a system are connected.

System DM A dedicated portion of the DM area that is used for special purposes in con-
trolling and managing the PC. Includes the Program Version, Parameter
Area, Parameter Backup Area, User Program Header, and Error History
Area.

system error An error generated by the system, as opposed to one resulting from execu-
tion of an instruction designed to generate an error.

system error message An error message generated by the system, as opposed to one resulting
from execution of an instruction designed to generate a message.

TC area A data area that can be used only for timers and counters. Each bit in the TC
area serves as the access point for the SV, PV, and Completion flag for the
timer or counter defined with that bit.

TC number A definer that corresponds to a bit in the TC area and used to define the bit
as either a timer or a counter.

terminal instruction An instruction placed on the right side of a ladder diagram that uses the final
execution conditions of an instruction line.

7
	�����

�((

TERMINAL Mode A Programming Console mode used to automatically display messages pro-
duced by the program and to input data area-mapped keys.

terminator The code comprising an asterisk and a carriage return (* CR) which indicates
the end of a block of data, whether it is a single-frame or multi-frame block.
Frames within a multi-frame block are separated by delimiters.

timer A location in memory accessed through a TC bit and used to time down from
the timer’s set value. Timers are turned ON and reset according to their ex-
ecution conditions.

transmission distance The distance that a signal can be transmitted.

TR area A data area used to store execution conditions so that they can be reloaded
later for use with other instructions.

transfer The process of moving data from one location to another within the PC, or
between the PC and external devices. When data is transferred, generally a
copy of the data is sent to the destination, i.e., the content of the source of
the transfer is not changed.

trigger address An address in the program that defines the beginning point for tracing. The
actual beginning point can be altered from the trigger by defining either a
positive or negative delay.

UM area The memory area used to hold the active program, i.e., the program that is
being currently executed.

Unit In OMRON PC terminology, the word Unit is capitalized to indicate any prod-
uct sold for a PC System. Though most of the names of these products end
with the word Unit, not all do. Context generally makes any limitations of this
word clear.

unit number A number assigned to some Link Units and Special I/O Units to facilitate
identification when assigning words or other operating parameters to it.

User DM The portion of the DM area that is available for general data storage and ma-
nipulation. Part of User DM may be dedicated if Special I/O Units or Link
Units are part of the PC.

watchdog timer A timer within the system that ensures that the cycle time stays within speci-
fied limits. When limits are reached, either warnings are given or PC opera-
tion is stopped depending on the particular limit that is reached.

word A unit of data storage in memory that consists of 16 bits. All data areas con-
sists of words. Some data areas can be accessed only by words; others, by
either words or bits.

word address The location in memory where a word of data is stored. A word address must
specify (sometimes by default) the data area and the number of the word that
is being addressed.

work bit A bit in a work word.

work word A word that can be used for data calculation or other manipulation in pro-
gramming, i.e., a ‘work space’ in memory. A large portion of the IR area is
always reserved for work words. Parts of other areas not required for special
purposes may also be used as work words.

�(�

���)

A
����	��	�� �� ���� ��	�� ##

����������� $-� ������ #"`#+

������	��� ������ 98

������	��� ��	�������

3,'� #5&`#65

������� #66`#8&

������ #8

�(,$$� ���
	����� ����� #4+� #5%

B
����	��� 1�� 3���	�� 2���� #6

3,'

������������� #5&`#65

���
	������ #&

�	��������� #&

������

������������� #66

�	��������� #&

������ ����� &5&

����

������������ #%"

����	� �	�-�	�	�� &"9

����������� &"5`&"9

C
���	����-����!� �	�����	� ����� &5

����	����� ����	� �	�-�	�	�� &+#

����!� ����	�� ���	� &5

����! ����	 ����� #6

�������������� .,� 8

,�
(�1 ���	� 5#

���������� ��	������ 98

������� ���

�	��������� #%

������������� #+

,������ (���	�� �	��������� "

��������	� ����	�� �	��������� "

�����	��� ###`#&8
���� �� 7, ��	�� "8
�������� (>� &+9
���������� ��	� �	�	�� ##6� #&%
��	����� 	:�	��	� ���	��� ##9
	:�	��	�� ##8
��������� (>� 6&
.��	������ &6
�	
	�����	 �����	��� #&%

,./� ��	�������� ����� &&"

,./ ����������� 8

����	� 2���� ,���	 ����� #6

����	 ���	� &&&`&&+
������������ &&4
������������ #98
���������� �� .���������� ,�����	� 65
 ���� ����� #6
���� ��� (,�
)#8*� &6
���������� &8
������ "#

D
����
���������� ������������� #+4`#4%
���
	������ #&� #4#`#5&
�	��	�	������ #5"
����	�	������ #5&
���������� &+4
��������� ������ ����� &+6
��������� �	:-3,'� &+&
��
���� #"9`#++
��
��� ����� #+"
��������� #&9`#"8
������	����� ������ �	����� #+%� #+&

'��� ���	�� ,�����	� �"" �	����	��� �	
��	�

���� ��	��
�	��������� 9
!	���� ��� &5&
��	���� �	��� ��	�
������	��� ������ ��	������� "&6
	���� ����� ��	������� "&6

��������	� #%

���� �	��	�	�������
������� &5&
�	������ &5#
�	:��	������ &5#

���� �	�	�����
�� 0� ��	�� "8
�� $� ��	�� #"
�� 1� ��	�� ++
�� (� ��	�� #+
�� 7, ��	�� "8
�� 7� ��	�� ++

�	����� ����� &5#

�	��	�	������ #5"

��%�!

�(,

�	���	��� �	��������� 96

�	�����	�� &9%

����	�	�����	� ������������� 99

�������� ���	�� 96

������ ����������� &"5

����� ����	��� #&

��������� ���
	����� �	��		� �	: ��� �(,$$� &+"

E

 �� �"" ����� $���������� :	������ ����

	���� ���	�� ������������ #96

	���� �������� &9%

	���� �������� �	�����	� ����� &&

	���� �	����	�� ������������ #99� &%%

	�����

��	����� �	����	�� 59

���������� �	����	�� &"+

	���� �������� &89

������ &88

����� ��	������ 	������ &88

������� ��	�� "4

���� ���!� &89

��������Q������ &86

$���������� :	������ ���� ����� #8

��
���� ����	������ &9%

�	����	 ����	�� &86`&88

�	����	� ��	� ��������� ��������� 6+

���������� &86

����	�� ���	��������� &9%

����������� ������������ &85

����������� �	����	�� #99� &%%

�	����� ��� ��	����� �	����	�� &85

�	�	������ #98

������������� .��� ����	� ��	�������� &4+

	:	������ ���������� �	��������� +8

	:	������ ���	� ������������� &&4

F

2������ $��	����	�� 7	������� �"" �	����	��� �	
��	�

2�1 ��	�� #6� #96

2�1(���	� ����	�� ���������� &8

2$7� �"" �	����	��� �	
��	�

����

������	���� #8

����������� 	:����	� #+5

����	�� ������ #6

,O

��	������ #5"

�	������ #5"

,���	 7��	 ����� #6

�	��������� #%

2���� ,���	� #6

$���������� :	������ ����� #8

(�	�� #8

����	� �	�-�	�	�� &"9

����	����� &+#`&+&

2���	� (����� 0��� 3��� #5

�������� ���	�� 96

G- -H
<.,� �"" �	����	��� �	
��	�

<������ .���������� ,�����	� �"" �	����	��� �	
��	�

�	:��	������ �	��������� #&

�	:��	����� ����� &5#

�������		� �����	�� "9`+%

������� ����� "&

�	�����	� ����� &%

���	����� ������ ����	� "&

��	� ����	� "+

���� ���!

�������� ��������� &66

����	����� ����	� ������� &65

�������� ��	������ ���	� &59

�������� ���	�-�����	� (>� &6"

�������� ��� �	�����	�� &5"`&8&

�������������� ��������� &49

2,(� &5&

����	 ��	�! �	��	��	� &5&

����������� ��� ������� &6+� &64

�	�����	�� &5+

�	����� ����� &54� &55� &56� &69� &8%

�	����� 	������ &54

�	����� ����	� ������� &64

�	����� ., ���	�� &65

�	����� ��������� &68

�	����� ������� &5+

�	����� ���	� ��� �����	� ������� &56

�	����� ���	�-�����	� .>� &58

�	����� ���	�-�����	� (>� &58� &59

�	�����	 ���	�� &8%

�	�����	 ���	� &"#

�	��������� &5+

�	������ &5+

���	���	� ��������� &66

������� ����� &6%� &6#� &6&

������� ��������� &68

������� ���	�-�����	� .>� &6&

������� ���	�-�����	� ������� &6#

0� ��	�� "8

��%�!

�("

I
$-� ���
�	��������� #"
������� #"

$-� ������� �	��	������ 	

$-� �	�����	 ���	�� &"%� &"#

$-� ������� ������������ #5

$-� ����
�	��������� #"
������� #"

����	�	������ #5&

�����	�� ����	������ 98

����� ���
������������� #+
�	��������� &

����� �	
��	� �	��������� &

����� ������ �	��������� &

����� ������� �	��������� &

����������� �	�
�'3)4%*� #66
�'')"%*� #5+
�
'� 4%� #%%
��������� ���� ��� 4#

�
' 1'� 4"� #%#
��������� ���� �� 1'� 45
��	 �� ����� ����!�� 4+

�
'
�7� 4%� #%%
�
'A)"+*� #8"
�(,)85*� #5%
�(1)&4*� #"+
�(�)&5*� #"+
3,')&+*� #4#
3,�.)58*� #+8
3,
7)56*�
3$
)&"*� #4#
3(7)6#*� #+#
,1,)+#*� #5"
,�.)&%*� #+4
,
7� ##6
,
7�)#&*� #&%
,��)&9*� #8&
' ,)"9*� #5"
'$2')#+*� 88� #%+`#%4
����� �� ���	����!�� #%8
����� �� ������ ##%

'$2/)#"*� 88� #%+`#%4
����� �� ���	����!�� #%8
����� �� ������ ##%

'$>)""*� #6&
'�.N)66*� #48
'>3)4"*� #8&

')%#*� 4&� ###
	:	������ ���	�� &&4
2�1)%5*� #96
2�1()%6*� #96
0'�)5#*� #&+
0 N)59*� #4+
07()54*� #4&

$1)%&*� 8+� #%8`##%
$1,)%"*� 8+� #%8`##%
$
,)"8*� #5&
$��2)96*� 	
@�)%4*� ##%
@�.)%+*� ##%
@�.)%+* ��� @�)%4*� 85
; .)##*� #%5
�� ����������� ��� ������� 88

; O)5&*� &%+
7 ��$
�1 ���	� 5&

����	� ������������� 4%
1'� 4%� #%%
1'
�7� 4%� #%%
1�(<)+6*� &%%
�13)4&*� #8#
�1.N)65*� #45
��>)&#*� #"9
��>3)8&*� #+"
��>')8"*� #+"
�(<)+5*� #99
�/1)"&*� #58
�>
)&&*� #"9

�7� +8
��	������ +6
��� 4#� #%%
��������� ���� �
'� 4#

�� 1'� 4+� #%#
��������� ���� �
' 1'� 45
��	 �� ����� ����!�� 44

��
�7� 4#� #%%
��A)"4*� #8"
�/7� 4&� #%"
�/7
�7� 4&� #%"
.$
)5+*�
.�/7)5"*� &%4
�'�)5%*� #&#
�	�����	� ����� &%

� 7)9"*� #85
��1)&6*� #"4
���)&8*� #"4
�A()#6*� #"&
(33)4#*� #69
(3
)9&*� #85
(3()9#*� #85
(,�
)#8*� #98
(27)#%*� #&9
(27�)8+*� #"6
(1')6+*� #"5
(
N7)%9*� #89
(�')64*� #"5
(7,)+%*� #5"
(7 .)%8*� #89
(70)55*� #4"
(/3)"#*� #54
(O()+9*� &%&
����������� ����	� ������� #5
����������� $-� ������� #6

�	���������� +5
7$�� ##&
7$�0)#4*� ##5
A'7)9+*�
A(27)#5*� #"#
N,0<)6"*� #+&
N2 �)6%*� #+%

��%�!

��4

N
�A)"6*� #84
N��A)"5*� #8+

������������� �	���������� ��	� ���������� 6&

$��	�� 0 N ������� &4"

���	����!�� #%8`##%
����� �	�������������� ���� ��� 89

���	����� �������� +&`+"
 ����	 3��� #4

���	������� #85

��
���� ����	������ &9%

$� ��	�� #"`#+

J- -L
���� ����	��� ##%

������ ##%`###

!	� �	��	��	�� 	:	������ ���� �������� &%+

����	� �������
���������� 8#
$1)%&* ��� $1,)%"*� 8+
����� 7� ����� 8&

����������� ��� ������
����� '$2/)#"* ��� '$2')#+*� 88� #%+`#%4
����� ; .)##*� #%5`#%6
����� �/7 ��� �/7
�7� 4&

���
	����� �� ��	����� ���	� +8`5#
�������
�� <.,� 2$7� �� 1((� +6
������������
���������� �
' 1' ��� �� 1'� 45
����������� ��� ������

����� ����	

��

����� ��� ��� ��� ����
��

������� 96
��������� 96
��������	� +6
����� ����� ����!�� 4"

����	� ������� ������������� #%%`#%"

1���	� (������ (������	� �"" �	����	��� �	
��	�

1 '�� �"" ,./ ����������

�	������� �	��������� ##

����� ����! ������������� ���
	����� �� ��	����� ���	� 4"`5%

����� ����!�� �"" ����	� �������

����� ������������� #8&`#84

1� ��	�� ++

1((� �"" �	����	��� �	
��	�

M
�	���� ��	�� �	��������� 9

�	���� ��	��� ��	������ 56

�	����	�� ������������ #99� &%%

��	����� ���	� ���
	������ +8`5#

��������� ����� �	:-������� &+&

����������
������� &+5
���������� " ������ &++

N
�	������ ���������	�� #86

��������� 	������ &86

�������� ����	� ���������� �	��������� +8

�7� �	��������� +8

O
��	���� ���� +8

��	������ 96
��������	 �	����������� 96
�	����	�	���� 96

��	������ ���	� �������� "#

��	������ ���	�� 54
������� ���	� &5

��	������ �����	�	��� �	������ &%&

��	������� ��	���������� 55`59

������ ���
������������� #+
����������� �
-�22 ���	� #%+
����������� ������� 88� 89
�	��������� "

������ �	
��	� �	��������� "

������ ������ �	��������� "

������ ������� �	��������� "

P
�����	�	� ��	�� &9
�	�����	� ����� &&

�����	�	� ���!�� ��	�� &9

��������� 	��	���� �� .���������� ,�����	� 55

., 1��! (���	��� 1� ��	� ������������ ++

.	����	��� '	
��	� �	�
��	 ���	� "#

�	����	��� �	
��	�� +
'��� ���	�� ,�����	� 4
2������ $��	����	�� 7	������)2$7*� 4
<������ .���������� ,�����)<.,*� +
1���	� (������ (������)1((*� 4
.����	� $��	����	 /���� 4
.���������� ,�����	� +� 5#`55
.���A���	�� 4

.	����	��� $��	����	 /���� �����	� 2���� &8

��	�	��
���	� �"" .>

��%�!

���

.����	� $��	����	 /���� �"" �	����	��� �	
��	�

����	�� ���	��������� &9%

������� 	:	������� 9"

������� �	��	�� "6
����������� &++

.������ �	����� ++
�	����� ����	�� ��� �	����� ����	��� 6%`6#
��������	� +9

�����������
��	�!� ��� �����:� 6+`65
	��	���� ��� 	������� 6#
	:����	� ����� ����� �	����	�� #"%
���������� ��������� ��� ��	�!���� 6%`86
���	����� ��� �	�	���� ������������� 69`8#
������ 85
��	��������� 9#
��	������ ���� �� ���� ��	��� #+#
�	�������� 66`68
�	����� ��� �	����� ���� �	���� ����	��� 6%
�������������� ���� ����	�	�����	� ������������� #%4
�������� +5

.���������� ,�����	� 5#`55
�""
L�] �	����	��� �	
��	�
�������	� "#
�����	� 2���� &8
��	������ ���	�� 5#

.���������� '	
��	�� .���������� ,�����	� !	� ������ ����
�������� &%+

.���A���	�
�""
L�] �	����	��� �	
��	�
������	����� ����
�� �(��&"&, ���	����	� &4#

��������� ���� ���! ��������������� &49

.>
���	�����
�� ., ��	�� "8
,
7�)#&*� #&%
���	�� ��� �����	��� ##&

R
�	�����	 ���	�
���� ���!� &"#
$-�� &"%`&"#
���	����� ���� �������� +&

�	���	�� &9%

���������� �	��������� ##

�(��&"&,
���	� ����� ��	�� &&�
���	� �	�	�
	� ��	�� &#
,������������� ,����	��� &#
�������������� 	���� ���	� &%
�	�	����� ,����	�	� 2���� &#
�	�	����� $��������	 2���� &#
7����������� .������	 2���� &#

�(��&"&, ���	����	
'� ��� �� ��	� �	������� &45
���	�� &45
�����	�	� �	������� "+
.��� ����	� ��	�������� &4#
�	�
��	 ���	� "#
(� ��	� �	������� &49

S
�	�
���	� �"" (>

����� �	����	��� #&9`#"8
����������� ����
����� ����� #"%

��	���� ������������� #96`	

(� ��	�� #+`#9

������ ����������� �"" ,./ ����������

��	� 	:	������� (�	� ����� #8

��	� ������������� #89`#96

���������	 ����	�� #85

���������	�� #85`#88

(>
���	�����
�� 7, ��	�� "8
��������� &+9
,
7�)#&*� #&%
���	�� ��� �����	��� ##&

����	� �������� &9
�	�����	� ����� &"

(���	� '�� ������� �� .��� �� ���� &8

T- -W
7, ��	�� "8`+"

7, ����	��� "8� ###

7 ��$
�1 ���	� 5#
$���� ,���	� 3��� &#
;	� 3���� &6

�	��������� &9%

���	 ����������� &9%

���	��� ###`#&8
���� �� 7, ��	�� "8
�������� (>� &+9
���������� ��	� �	�	�� ##"� ##5
	:����	 ����� ,�.)&%*� #+5
	:�	��	� ���	��� ##"
����!	� ����� ##4
��������� (>� 6&
�
-�22 �	����� ##+
��	����� ����� ##+

7� ��	�� ++

7� ����� ��	 �� ���������� 8&

/����� �	��������� "

������	��	� ��������� &68

�������� ���	�� &&+
	:�	������

���� ���� �	��������� #%

���! ����� �	��������� #%

���

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W176-E1-4A

Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content

1 July 1990 Original production

2 June 1991 Page 5: PROM Writer, Floppy Disk Interface Unit, and Printer Interface Unit require interfacing via GPC.
Page 15: First paragraph, third line: Replace “3-digit BCD” with “4-digit BCD”.
Pages 18 and 19 : Remove the first two paragraphs of Section 3--4--1.
Page 22: Paragraph four rewritten.
Page 24: Section 3--5--4 paragraph one: Replace “converted to a parity code” with “counted in hexadecimal”.
Page 27: N0. 3 under “Executing System Command” and second sentence in paragraph one of Section 3--5--10 corrected.
Page 28: Number 3 under “Set Bit” corrected.
Page 29: Table: Replace “AR 200” with “AR 2200”.
Page 30: Second sentence in paragraph four, text in graphic and last paragraph corrected.
Page 31: Paragraph two: Replace “DM 1000 to 1799” with “DM 1000 to 1899” in both instances.
Page 37: Replace “RS/CS” with “RTS/CTS,” “Interlec HEX” with “Intel HEX,” and “Motorola S” with “Motorola S-Record.”
Page 41: Paragraphs five and seven: Replaced “250 #Gms” with “250 �s”. Paragraph eight corrected.
Page 42: Paragraph five, line one corrected.
Page 46: Last paragraph, last sentence corrected.
Page 70: Paragraph five, diagram, and paragraph six corrected.
Page 76: Paragraph four, line three corrected.
Page 81: Numerical ranges under and in paragraphs one and three corrected.
Page 83: Numerical figures in paragraph four and six corrected.
Page 98: Ladder symbols, paragraph two, paragraph four, and paragraph five corrected.
Page 101: Text in first graphic corrected and paragraph two eliminated.
Page 105: First sentence, line one of paragraph four, line three of paragraph four corrected and diagram added.
Page 110: TCMP(85) removed (not supported by Mini H-type PCs).
Page 116: Paragraph one: “to 7-segment display data” eliminated from lines three and four.
Page 118: Note added to limitations to STH(66).
Page 119: Error Flag description corrected.
Page 120: Second diagram: Replaced “Digit number: 0123” with “Digit number: 3210”.
Page 125: First paragraph of Section 5--15: Add INC(38) to the BCD calculation instructions.
Page 128: Sentence including ADDL(54) eliminated (not supported by Mini H-type PCs).
Page 131: Last diagram: The remainder should follow the quotient.
Page 132: Last diagram: Replace “Dd: HR 09” with “Dr: HR 09”.
Page 140: Sentence including INT(89) eliminated (not supported by Mini H-type PCs).
Page 152: Leftmost column of table corrected.
Page 153: Section 5--20--4 rewritten:
Page 155: Last paragraph, last line: Replace “...places the result in D.” with “...places the result in R.”
Page 166: ROOT(72) and FUN(89) eliminated from table (not supported by Mini H-type PCs).
Page 184: Paragraph nine: Replace “402180” with “4021”, and “2180” with “21”.
Page 187: Last key explanation corrected (block programming instructions not supported by Mini H-type PCs).
Page 189: Remove the last sentence.
Page 196: Paragraph four and paragraph six corrected to remove reference to block programming instructions.
Page 224: Replace “INTELLEC HEX” with “Intel’s HEX” and “MOTOROLA [S]” with “Motorola’s S-Record”.
Pages 225, 226: Add a seventh step added to procedures and graphic.
Page 228: Fourth paragraph from the bottom: Eliminate “bits 08 to 15” from line two.
Page 230: Numeric limitations corrected in first and second diagrams.
Page 258: Table: Replaced “AR 0000 to AR 0015” with “AR 0000 to AR 0007”
Page 264: Corrected model number for Cassette Recorder Connecting Cable to SCY-P0R-PLG01.
Page 289: Program Read Protect/Clear eliminated (not supported by Mini H-type PCs).
Pages 290, 291: Cassette Tape Operations eliminated (cassette tape recorder requires interfacing via GPC).
Page 291: PROM Writer operations are applicable to non-OMRON products, i.e. Intel’s HEX and Motorola’s S-Record.
Page 294: INT(89) eliminated (not supported by Mini H-type PCs).
Page 298: Table, row five: Replace “DM 1000 to DM 1799” with “DM 1000 to DM 1899”.
Page 316: Replace “RS/CS” with “RTS/CTS,” “Interlec HEX” with “Intel HEX,” and “Motorola S” with “Motorola S-Record.”

2A August 1991 Pages 86, 87, 110, 276 Jump number range corrected to 00 to 49.
Pages 171, 287 Subroutine number range corrected to 00 to 49.
Page 116 TC number range clarified.

2B December 1991 Page 196 Time required for overseeing changed to 2.9 ms.
Page 197 Times required for processing changed.
Pages 230, 231 Rewritten to remove “Single-link System” protocol.

������	� 6���	��

��#

Revision code Revised contentDate

3 June 1992 Manual revised for V1 of CPUs and to include C60H.
Page 51 “NOT” added after “LD” in top table of mnemonic code.
Page77 First digit in last display corrected to “0.”
Page 80 Condition for IR 00105 corrected to NO and that for IR 00104 corrected
to NC in Before Insertion portion of example ladder diagram.
Page 81 Bottom table of mnemonic code corrected.
Page 87 “5” removed from end of last operand in top table of mnemonic code.
Page 93 Last operand in bottom table of mnemonic code corrected.
Page 109 Following added to bottom table of mnemonic code: 00008 LD 00100.
Page 113 Last operand in bottom table of mnemonic code corrected.
Page 116 Second “LD” corrected to “AND” in table of mnemonic code.
Page 132 Function code for ASR corrected in illustration.
Page 131 “00514” corrected to “05014” and “@SFT(10)” corrected to SFTR(84)
in table of mnemonic code.
Page 157 “AND(30)” corrected to “ADD(30)” in table of mnemonic code.
Page 165 “25505” corrected to “25504” and “#0000” corrected to ”#0001” in oper-
ands in table of mnemonic code.
Page 199 Execution times corrected for TIMH(15).
Page 200 OFF execution times for RDM(60) corrected to the same values as the
ON execution times.
Page 209 Completion Flag ON mark added to display.
Page 211 Caret added to the third display from the bottom.
Page 213 Displays corrected.
Page 218 “0001” corrected to “0123” in the bottom display.
Page 221 Displays corrected.
Page 237 Response for ERROR READ corrected for bits 2, 3, and 4.
Page 240 Format for timer/counter data changed to BCD for PV READ, and maxi-
mum timer/counter number corrected to 0511 for SV READ 1/2.
Pages 242 and 243 Format for data area contents corrected to hexadecimal.
Page 245 Maximum timer/counter number corrected to 0511 for SV CHANGE 2.
Page 247 Code to clear forced set/reset status corrected from “0100” to “1000.”
Page 249 “C120 or C20” changed to “C120 or C50” for PC MODEL READ.
Page 271 Same as for page 199.
Page 273 Same as for page 200.
Page 297 and 298 Flag addresses corrected in table column headers.
Page 313 Direction of arrows reversed for E7 and F7.

4 March 1993 Page 128 “Example” changed to “Example 1.”
Page 129 Example 2 added.
Page 294: EPROM model number ROM-IC-B has been added to the note.
Pages 295, 296: Peripheral Devices table slightly altered to reflect the list in the
Installation Guide.
Page 296: Programming Console Base Unit specifications were corrected.

4A July 1994 Address change. Scan time changed to Cycle time throughout the manual.
Page 13: Input bits for C60H Expansion I/O Units corrected.
Page 333: Output bits for C60H CPUs corrected.
Page 334: Output bits for C60H Expansion I/O Units corrected.

	C20H/C28H/C40/C60H Operation Manual
	Notice
	TABLE OF CONTENTS
	About this Manual
	SECTION 1 Introduction
	1-1 Overview
	1-2 The Origins of PC Logic
	1-3 PC Terminology
	1-4 OMRON Product Terminology
	1-5 Overview of PC Operation
	1-6 Peripheral Devices
	1-7 Available Manuals

	SECTION 2 Hardware Considerations
	2-1 Indicators
	2-2 PC Configuration

	SECTION 3 Memory Areas
	3-1 Introduction
	3-2 Data Area Structure
	3-3 IR (Internal Relay) Area
	3-4 SR (Special Relay) Area
	3-4-1 RS-232C/CPU-mounting Host Link Unit Flags and Control Bits
	3-4-2 Interrupt Output Enable Bit
	3-4-3 Forced Status Hold Bit
	3-4-4 I/O Status Hold Bit
	3-4-5 FAL (Failure Alarm) Area
	3-4-6 Battery Alarm Flag
	3-4-7 Cycle Time Error Flag
	3-4-8 First Cycle Flag
	3-4-9 Clock Pulse Bits
	3-4-10 Step Flag
	3-4-11 Instruction Execution Error Flag, ER
	3-4-12 Arithmetic Flags

	3-5 AR (Auxiliary Relay) Area
	3-5-1 Reversible Drum Counter Bits
	3-5-2 High-speed Counter Bits
	3-5-3 RS-232C Communications Error Code
	3-5-4 RS-232C Communications Flags
	3-5-5 RS-232C Communications Counters
	3-5-6 RS-232C Bytes Received Area
	3-5-7 TERMINAL Mode Cancel Bit
	3-5-8 Error History Bits
	3-5-9 RS-232C Bytes Input Area
	3-5-10 System Parameter Flags
	3-5-11 System Command Bits
	3-5-12 Startup Operating Mode
	3-5-13 Current Time Area
	3-5-14 Calender/Clock Area and Bits
	3-5-15 TERMINAL Mode Key Bits
	3-5-16 Power-off Counter
	3-5-17 SCAN(18) Cycle Time Flag
	3-5-18 Programming Console/Peripheral Interface Unit Mounted Flag
	3-5-19 FALS-generating Address
	3-5-20 Cycle Time Indicators

	3-6 DM (Data Memory) Area
	3-6-1 General User Areas
	3-6-2 Parameter and Parameter Backup Areas
	3-6-3 Error History Area
	3-6-4 User Program Header Area

	3-7 HR (Holding Relay) Area
	3-8 TC (Timer/Counter) Area
	3-8-1 High-speed Counter
	3-8-2 System DM High-speed Counter Parameters
	3-8-3 Interrupt Drum Outputs

	3-9 LR (Link Relay) Area
	3-10 Program Memory
	3-11 TR (Temporary Relay) Area

	SECTION 4 Writing and Entering Programs
	4-1 Basic Procedure
	4-2 Instruction Terminology
	4-3 Basic Ladder Diagrams
	4-3-1 Basic Terms
	4-3-2 Mnemonic Code
	4-3-3 Ladder Instructions
	4-3-4 Output and Output Not
	4-3-5 The END Instruction
	4-3-6 Logic Block Instructions
	4-3-7 Coding Mulitple Instructions

	4-4 The Programming Console
	4-4-1 TERMINAL and CONSOLE Modes
	4-4-2 The Keyboard
	4-4-3 PC Modes

	4-5 Preparation for Operation
	4-5-1 Entering the Password
	4-5-2 Clearing the Memory
	4-5-3 Clearing Error Messages

	4-6 Inputting, Modifying and Checking the Program
	4-6-1 Setting and Reading from Program Memory Address
	4-6-2 Entering or Editing Programs
	4-6-3 Checking the Program
	4-6-4 Displaying the Cycle Time
	4-6-5 Program Searches
	4-6-6 Inserting and Deleting Instructions
	4-6-7 Branching Instruction Lines
	4-6-8 Jumps

	4-7 Controlling Bit Status
	4-7-1 Differentiate Up and Differentiate Down
	4-7-2 Keep
	4-7-3 Self-maintaining Bits (Seal)

	4-8 Work Bits (Internal Relays)
	4-9 Programming Precautions
	4-10 Program Execution

	SECTION 5 Instruction Set
	5-1 Notation
	5-2 Instruction Format
	5-3 Data Areas, Definer Values and Flags
	5-4 Differentiated Instructions
	5-5 Ladder Diagram Instructions
	5-5-1 Load, Load Not, And, And Not, Or and Or Not
	5-5-2 And Load and Or Load
	5-5-3 Coding Conditions and Other Instructions

	5-6 Bit Control Instructions
	5-6-1 Output and Output Not - OUT and OUT NOT
	5-6-2 Differentiate Up and Down - DIFU(13) and DIFD(14)
	5-6-3 Keep - KEEP(11)

	5-7 Interlock and Interlock Clear - IL(02) and ILC(03)
	5-8 Jump and Jump End - JMP(04) and JME(05)
	5-9 End - END(01)
	5-10 Timer and Counter Instructions
	5-10-1 Timer - TIM
	5-10-2 High-speed Timer - TIMH(15)
	5-10-3 Counter - CNT
	5-10-4 Reversible Counter - CNTR(12)
	5-10-5 Reversible Drum Counter - RDM(60)
	5-10-6 High-speed Counter - HDM(61)

	5-11 Data Shifting
	5-11-1 Shift Register - SFT(10)
	5-11-2 Word Shift - WSHT(16)
	5-11-3 Reversible Word Shift - RWS(17)
	5-11-4 Arithmetic Shift Left - ASL(25)
	5-11-5 Arithmetic Shift Right - ASR(26)
	5-11-6 Rotate Left - ROL(27)
	5-11-7 Rotate Right - ROR(28)
	5-11-8 One Digit Shift Left - SLD(74)
	5-11-9 One Digit Shift Right - SRD(75)
	5-11-10 Reversible Shift Register - SFTR(84)

	5-12 Data Movement
	5-12-1 Move - MOV(21)
	5-12-2 Move Not - MVN(22)
	5-12-3 Block Transfer - XFER(70)
	5-12-4 Block Set - BSET(71)
	5-12-5 Data Exchange - XCHG(73)
	5-12-6 Move Bit - MOVB(82)
	5-12-7 Move Digit - MOVD(83)

	5-13 Data Comparison
	5-13-1 Compare - CMP(20)
	5-13-2 Block Compare - BCMP(68)

	5-14 Data Conversion
	5-14-1 BCD-to-Binary - BIN(23)
	5-14-2 Binary-to-BCD - BCD(24)
	5-14-3 Hours-to-Seconds - HTS(65)
	5-14-4 Seconds-to-Hours - STH(66)
	5-14-5 Hexadecimal Convert - HEX(69)
	5-14-6 4-to-16 Decoder - MLPX(76)
	5-14-7 16-to-4 Encoder - DMPX(77)
	5-14-8 ASCII Convert - ASC(86)

	5-15 BCD Calculations
	5-15-1 Increment - INC(38)
	5-15-2 Decrement - DEC(39)
	5-15-3 Set Carry - STC(40)
	5-15-4 Clear Carry - CLC(41)
	5-15-5 BCD Add - ADD(30)
	5-15-6 BCD Subtract - SUB(31)
	5-15-7 BCD Multiply - MUL(32)
	5-15-8 BCD Divide - DIV(33)

	5-16 Binary Calculations
	5-16-1 Binary Add - ADB(50)
	5-16-2 Binary Subtract - SBB(51)
	5-16-3 Binary Multiply - MLB(52)
	5-16-4 Binary Divide - DVB(53)

	5-17 Logic Instructions
	5-17-1 Complement - COM(29)
	5-17-2 Logical And - ANDW(34)
	5-17-3 Logical Or - ORW(35)
	5-17-4 Exclusive Or - XORW(36)
	5-17-5 Exclusive Nor - XNRW(37)

	5-18 Subroutines
	5-18-1 Overview
	5-18-2 Subroutine Start and Return - SBN(92)/RET(93)
	5-18-3 Subroutine Enter - SBS(91)

	5-19 Step Instructions
	5-19-1 Step Define and Step Start - STEP(08)/SNXT(09)

	5-20 Special Instructions
	5-20-1 Failure Alarm - FAL(06) and Severe Failure Alarm - FALS(07)
	5-20-2 Cycle Time - SCAN(18)
	5-20-3 Display Message - MSG(46)
	5-20-4 Long Message - LMSG(47)
	5-20-5 Set System - SYS(49)
	5-20-6 Key Input - KEY(62)
	5-20-7 RS-232C Port Output - POUT(63)
	5-20-8 RS-232C Port Input - PIN(64)
	5-20-9 Bit Counter - BCNT(67)
	5-20-10 Watchdog Timer Refresh - WDT(94)
	5-20-11 I/O Refresh - IORF(97)

	SECTION 6 Program Execution Timing
	6-1 Cycle Time
	6-2 Calculating Cycle Time
	6-3 Instruction Execution Times
	6-4 I/O Response Time
	6-5 Host Link Response Time

	SECTION 7 Program Debugging and Execution
	7-1 Displaying and Clearing Error Messages
	7-2 Monitoring Operation and Modifying Data
	7-2-1 Bit/Word Monitor
	7-2-2 Forced Set/Reset
	7-2-3 Forced Set/Reset Cancel
	7-2-4 Hexadecimal/BCD Data Modification
	7-2-5 Hex/ASCII Display Change
	7-2-6 Program Header Display
	7-2-7 3-word Monitor
	7-2-8 3-word Data Modification
	7-2-9 Binary Monitor
	7-2-10 Binary Data Modification
	7-2-11 Changing Timer/Counter SV
	7-2-12 PROM Writer Operations

	SECTION 8 RS-232C Interface
	8-1 RS-232C Interface Modes
	8-2 DM and AR Area Settings
	8-3 SR Area Bits and Flags
	8-4 Host Link Communications Protocol
	8-4-1 Block Format
	8-4-2 Block Format With More Than One Frame
	8-4-3 Data Representation
	8-4-4 FCS Calculation
	8-4-5 FCS Calculation Program Example

	8-5 Host Link Commands and Responses
	8-5-1 Test - TS
	8-5-2 Status Read - MS
	8-5-3 Error Read - MF
	8-5-4 IR Area Read - RR
	8-5-5 HR Area Read - RH
	8-5-6 AR Area Read - RJ
	8-5-7 LR Area Read - RL
	8-5-8 TC Status Read - RG
	8-5-9 DM Area Read - RD
	8-5-10 PV Read - RC
	8-5-11 SV Read 1 - R#
	8-5-12 SV Read 2 - R$
	8-5-13 Status Write - SC
	8-5-14 IR Area Write - WR
	8-5-15 HR Area Write - WH
	8-5-16 AR Area Write - WJ
	8-5-17 LR Area Write - WL
	8-5-18 TC Status Write - WG
	8-5-19 DM Area Write - WD
	8-5-20 PV Write - WC
	8-5-21 SV Change 1 - W#
	8-5-22 SV Change 2 - W$
	8-5-23 Forced Set - KS
	8-5-24 Forced Reset - KR
	8-5-25 Multiple Forced Set/Reset - FK
	8-5-26 Multiple Forced Set/Reset Status Read - FR
	8-5-27 Forced Set/Reset Cancel - KC
	8-5-28 PC Model Read - MM
	8-5-29 Abort and Initialize - XZ
	8-5-30 Response to an Undefined Command - IC
	8-5-31 Response Indicating an Unprocessed Command
	8-5-32 Program Read - RP
	8-5-33 Program Write - WP
	8-5-34 I/O Register - QQMR
	8-5-35 I/O Read - QQIR
	8-5-36 Response Code List
	8-5-37 Communications Examples

	8-6 Command Levels

	SECTION 9 Troubleshooting
	9-1 Alarm Indicators
	9-2 Programmed Alarms and Error Messages
	9-3 Reading and Clearing Errors and Messages
	9-4 Error Messages
	9-5 Error History Function
	9-6 Host Link Error Processing
	9-6-1 Error Control
	9-6-2 Invalid Processing
	9-6-3 Process Interruption
	9-6-4 Time Monitoring
	9-6-5 Retries

	Appendix A - Standard Models
	Appendix B - Programming Instructions
	Appendix C - Programming Console Operations
	Appendix D - Error and Arithmetic Flag Operation
	Appendix E - Memory Areas
	Appendix F - Word Assignment Recording Sheets
	Appendix G - Program Coding Sheet
	Appendix H - Data Conversion Table
	Appendix I - Extended ASCII
	Appendix J - Programming Console Key Codes
	Appendix K - Parameter Area Coding Charts
	Glossary
	Index
	Revision History

